Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add vgg16 benchmark configuration #20

Merged
merged 10 commits into from
Dec 28, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
169 changes: 169 additions & 0 deletions fluid/vgg16.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
"""VGG16 benchmark in Fluid"""
from __future__ import print_function

import sys
import time
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import argparse
import functools

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--batch_size', type=int, default=32, help="Batch size for training.")
parser.add_argument(
'--learning_rate',
type=float,
default=1e-3,
help="Learning rate for training.")
parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help="The device type.")
parser.add_argument(
'--data_format',
type=str,
default='NCHW',
choices=['NCHW', 'NHWC'],
help='The data order, now only support NCHW.')
parser.add_argument(
'--data_set',
type=str,
default='cifar10',
choices=['cifar10', 'flowers'],
help='Optional dataset for benchmark.')
args = parser.parse_args()


def vgg16_bn_drop(input):
def conv_block(input, num_filter, groups, dropouts):
return fluid.nets.img_conv_group(
input=input,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act='relu',
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type='max')

conv1 = conv_block(input, 64, 2, [0.3, 0])
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
fc1 = fluid.layers.fc(input=drop, size=512, act=None)
bn = fluid.layers.batch_norm(input=fc1, act='relu')
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
return fc2


def main():
if args.data_set == "cifar10":
classdim = 10
data_shape = [3, 32, 32]
else:
classdim = 102
data_shape = [3, 224, 224]

images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')

net = vgg16_bn_drop(images)
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)

optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
opts = optimizer.minimize(avg_cost)

accuracy = fluid.evaluator.Accuracy(input=predict, label=label)

# inference program
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
test_accuracy = fluid.evaluator.Accuracy(
input=predict, label=label, main_program=inference_program)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(
test_target, main_program=inference_program)

# data reader
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
batch_size=args.batch_size)

# test
def test(exe):
test_accuracy.reset(exe)
for batch_id, data in enumerate(test_reader()):
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])

exe.run(inference_program,
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost] + test_accuracy.metrics)

return test_accuracy.eval(exe)

place = fluid.CPUPlace() if args.device == 'CPU' else fluid.GPUPlace(0)
exe = fluid.Executor(place)

exe.run(fluid.default_startup_program())

iters = 0
for pass_id in range(args.num_passes):
# train
start_time = time.time()
num_samples = 0
accuracy.reset(exe)
for batch_id, data in enumerate(train_reader()):
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])

loss, acc = exe.run(fluid.default_main_program(),
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost] + accuracy.metrics)
iters += 1
num_samples += len(data)
print("Pass = %d, Iters = %d, Loss = %f, Accuracy = %f" %
(pass_id, iters, loss, acc))
pass_elapsed = time.time() - start_time

pass_test_acc = test(exe)
print(
"Pass = %d, Training performance = %f imgs/s, Test accuracy = %f\n"
% (pass_id, num_samples / pass_elapsed, pass_test_acc))


def print_arguments():
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')


if __name__ == "__main__":
print_arguments()
main()
Loading