This repository is used to generate interactive linker statistics. Please have a look at our interactive example.
Install arm-none-eabi-gcc
and add to your path. This will install arm-none-eabi-nm
. The analysis tool require the executable arm-none-eabi-nm
to be present in your environemntal PATH.
Then clone the tool to a local directory
git clone /~https://github.com/ARMmbed/mbed-os-linker-report
If you want to know how much each file contributes to the final size of the binary mbed-cli provides these statistics at compile time:
> mbed compile -m K64F -t GCC_ARM --stats-depth=100
Building project mbed-os-example-blinky (K64F, GCC_ARM)
Scan: .
Scan: mbed
Scan: env
Scan: FEATURE_LWIP
Scan: FEATURE_STORAGE
...
+--------------------------------------------------------------------------------------------------------------------+-------+-------+------+
| Module | .text | .data | .bss |
+--------------------------------------------------------------------------------------------------------------------+-------+-------+------+
| [fill] | 86 | 4 | 2369 |
| [lib]/libc.a/lib_a-abort.o | 16 | 0 | 0 |
| [lib]/libc.a/lib_a-closer.o | 36 | 0 | 0 |
| [lib]/libc.a/lib_a-ctype_.o | 257 | 0 | 0 |
| [lib]/libc.a/lib_a-fputwc.o | 264 | 0 | 0 |
...
...
...
| mbed-os/rtos/rtx5/mbed_rtx_handlers.o | 649 | 0 | 0 |
| mbed-os/targets/TARGET_Freescale/TARGET_MCUXpresso_MCUS/TARGET_MCU_K64F/TARGET_FRDM/PeripheralPins.o | 288 | 0 | 0 |
| mbed-os/targets/TARGET_Freescale/TARGET_MCUXpresso_MCUS/TARGET_MCU_K64F/TARGET_FRDM/fsl_clock_config.o | 120 | 0 | 0 |
| mbed-os/targets/TARGET_Freescale/TARGET_MCUXpresso_MCUS/api/sleep.o | 16 | 0 | 0 |
| Subtotals | 44769 | 2680 | 9080 |
+--------------------------------------------------------------------------------------------------------------------+-------+-------+------+
Total Static RAM memory (data + bss): 11760 bytes
Total Flash memory (text + data): 47449 bytes
Image: ./BUILD/K64F/GCC_ARM/mbed-os-example-blinky.bin
To turn this data into the example visualisation:
> mbed compile --stats-depth=100 | ../mbed-os-linker-report/binsize.py -b
For performing the analysis, you need to recompile your program. You need to enable debugging info in your elf file by passing the -g
option to gcc
. The default mbed-os compile profile does not do this, hence you need to use the modified profile inside the compiler_profiles
folder.
# For develop profile
> mbed compile -m K64F -t GCC_ARM -c --profile=../mbed-os-linker-report/compiler_profiles/develop.json
# For release profile
> mbed compile -m K64F -t GCC_ARM -c --profile=../mbed-os-linker-report/compiler_profiles/release.json
# For debug profile
> mbed compile -m K64F -t GCC_ARM -c --profile=debug
Note: if you have a custom compiler profile, you will need to add the "-g"
flag in the "common"
section.
Now run the ELF linker statistics tool:
# Process Data: provide one or more elf files for analysis
> python ../mbed-os-linker-report/elfsize.py -i BUILD/K64F/GCC_ARM/mbed-os-example-blinky.elf -b
This will open up a browser page automatically with the visualisation.
> python binsize.py -h
usage: binsize.py [-h] [-o OUTPUT] [-b]
Analyse mbed compile output from stdin and generate a json data file for
visualisation
optional arguments:
-h, --help show this help message and exit
-o OUTPUT, --output OUTPUT
path of output json, defaults to
/Users/leozhou/projects/mbed-os-linker-report/html
/data-flare.js, default filename to data-flare.js if a
folder is specified
-b, --browser launch the pie chart visualisation in a browser
> python elfsize.py -h
usage: elfsize.py [-h] -i [BINARY [BINARY ...]] [-o OUTPUT] [-b]
Analyse binary built by gcc and generate json containing binary size
information
optional arguments:
-h, --help show this help message and exit
-i [BINARY [BINARY ...]], --binary [BINARY [BINARY ...]]
path to the binary. You can also specify multiple
binaries: -i <path1> <path2>
-o OUTPUT, --output OUTPUT
path of output json, defaults to
/Users/leozhou/projects/mbed-os-linker-report/html
/data-flare.js, default filename to data-flare.js if a
folder is specified
-b, --browser launch the pie chart visualisation in a browser
For uVisor the statistics of two ELF files need to be combined into a single JSON file. This is how it works:
# Download latest version of a uVisor enabled app
> mbed import mbed-os-example-uvisor
# Change into that directory
> cd mbed-os-example-uvisor
# Recompile uVisor - the command below needs to run twice due to a Makefile bug
> make -C mbed-os/features/FEATURE_UVISOR/importer
# Recompile mbed-os app
# For develop profile
> mbed compile -m K64F -t GCC_ARM -c --profile=../mbed-os-linker-report/compiler_profiles/develop.json
# Combine both elf outputs into a singe JSON file
> python ../mbed-os-linker-report/elfsize.py -i mbed-os/features/FEATURE_UVISOR/importer/TARGET_IGNORE/uvisor/platform/kinetis/release/configuration_kinetis_cortex_m4_0x1fff0000.elf BUILD/K64F/GCC_ARM/mbed-os-example-uvisor.elf -b
Below you can find an example screenshot of our tool. Please have a look at our interactive example, too.