Skip to content

Post-processing of linker output to calculate and visualize memory usage for elf-sections

License

Notifications You must be signed in to change notification settings

dflogeras/mbed-os-linker-report

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Binary Size Analysis

This repository is used to generate interactive linker statistics. Please have a look at our interactive example.

Installation

Install arm-none-eabi-gcc and add to your path. This will install arm-none-eabi-nm. The analysis tool require the executable arm-none-eabi-nm to be present in your environemntal PATH.

Then clone the tool to a local directory

git clone /~https://github.com/ARMmbed/mbed-os-linker-report

Running the Analysis

File level analysis - any compiler, any compiler profile

If you want to know how much each file contributes to the final size of the binary mbed-cli provides these statistics at compile time:

> mbed compile -m K64F -t GCC_ARM --stats-depth=100
Building project mbed-os-example-blinky (K64F, GCC_ARM)
Scan: .
Scan: mbed
Scan: env
Scan: FEATURE_LWIP
Scan: FEATURE_STORAGE
...
+--------------------------------------------------------------------------------------------------------------------+-------+-------+------+
| Module                                                                                                             | .text | .data | .bss |
+--------------------------------------------------------------------------------------------------------------------+-------+-------+------+
| [fill]                                                                                                             |    86 |     4 | 2369 |
| [lib]/libc.a/lib_a-abort.o                                                                                         |    16 |     0 |    0 |
| [lib]/libc.a/lib_a-closer.o                                                                                        |    36 |     0 |    0 |
| [lib]/libc.a/lib_a-ctype_.o                                                                                        |   257 |     0 |    0 |
| [lib]/libc.a/lib_a-fputwc.o                                                                                        |   264 |     0 |    0 |
...
...
...
| mbed-os/rtos/rtx5/mbed_rtx_handlers.o                                                                              |   649 |     0 |    0 |
| mbed-os/targets/TARGET_Freescale/TARGET_MCUXpresso_MCUS/TARGET_MCU_K64F/TARGET_FRDM/PeripheralPins.o               |   288 |     0 |    0 |
| mbed-os/targets/TARGET_Freescale/TARGET_MCUXpresso_MCUS/TARGET_MCU_K64F/TARGET_FRDM/fsl_clock_config.o             |   120 |     0 |    0 |
| mbed-os/targets/TARGET_Freescale/TARGET_MCUXpresso_MCUS/api/sleep.o                                                |    16 |     0 |    0 |
| Subtotals                                                                                                          | 44769 |  2680 | 9080 |
+--------------------------------------------------------------------------------------------------------------------+-------+-------+------+
Total Static RAM memory (data + bss): 11760 bytes
Total Flash memory (text + data): 47449 bytes

Image: ./BUILD/K64F/GCC_ARM/mbed-os-example-blinky.bin

To turn this data into the example visualisation:

> mbed compile --stats-depth=100 | ../mbed-os-linker-report/binsize.py -b

Symbol level analysis - arm gcc compiler, modified compiler profile

For performing the analysis, you need to recompile your program. You need to enable debugging info in your elf file by passing the -g option to gcc. The default mbed-os compile profile does not do this, hence you need to use the modified profile inside the compiler_profiles folder.

# For develop profile
> mbed compile -m K64F -t GCC_ARM -c --profile=../mbed-os-linker-report/compiler_profiles/develop.json
# For release profile
> mbed compile -m K64F -t GCC_ARM -c --profile=../mbed-os-linker-report/compiler_profiles/release.json
# For debug profile
> mbed compile -m K64F -t GCC_ARM -c --profile=debug

Note: if you have a custom compiler profile, you will need to add the "-g" flag in the "common" section.

Now run the ELF linker statistics tool:

# Process Data: provide one or more elf files for analysis
> python ../mbed-os-linker-report/elfsize.py -i BUILD/K64F/GCC_ARM/mbed-os-example-blinky.elf -b

This will open up a browser page automatically with the visualisation.

Advanced usage

More Options

> python binsize.py -h
usage: binsize.py [-h] [-o OUTPUT] [-b]

Analyse mbed compile output from stdin and generate a json data file for
visualisation

optional arguments:
  -h, --help            show this help message and exit
  -o OUTPUT, --output OUTPUT
                        path of output json, defaults to
                        /Users/leozhou/projects/mbed-os-linker-report/html
                        /data-flare.js, default filename to data-flare.js if a
                        folder is specified
  -b, --browser         launch the pie chart visualisation in a browser

> python elfsize.py -h
usage: elfsize.py [-h] -i [BINARY [BINARY ...]] [-o OUTPUT] [-b]

Analyse binary built by gcc and generate json containing binary size
information

optional arguments:
  -h, --help            show this help message and exit
  -i [BINARY [BINARY ...]], --binary [BINARY [BINARY ...]]
                        path to the binary. You can also specify multiple
                        binaries: -i <path1> <path2>
  -o OUTPUT, --output OUTPUT
                        path of output json, defaults to
                        /Users/leozhou/projects/mbed-os-linker-report/html
                        /data-flare.js, default filename to data-flare.js if a
                        folder is specified
  -b, --browser         launch the pie chart visualisation in a browser

Example for uVisor statistics

For uVisor the statistics of two ELF files need to be combined into a single JSON file. This is how it works:

# Download latest version of a uVisor enabled app
> mbed import mbed-os-example-uvisor
# Change into that directory
> cd mbed-os-example-uvisor
# Recompile uVisor - the command below needs to run twice due to a Makefile bug
> make -C mbed-os/features/FEATURE_UVISOR/importer
# Recompile mbed-os app
# For develop profile
> mbed compile -m K64F -t GCC_ARM -c --profile=../mbed-os-linker-report/compiler_profiles/develop.json
# Combine both elf outputs into a singe JSON file
> python ../mbed-os-linker-report/elfsize.py -i mbed-os/features/FEATURE_UVISOR/importer/TARGET_IGNORE/uvisor/platform/kinetis/release/configuration_kinetis_cortex_m4_0x1fff0000.elf BUILD/K64F/GCC_ARM/mbed-os-example-uvisor.elf -b

Example Output

Below you can find an example screenshot of our tool. Please have a look at our interactive example, too. d3.js based ELF Linker Statistics

About

Post-processing of linker output to calculate and visualize memory usage for elf-sections

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 97.7%
  • Python 1.7%
  • Other 0.6%