Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PtndArrayEx.multiboxDetection() implementation #2769

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions api/src/main/java/ai/djl/nn/Block.java
Original file line number Diff line number Diff line change
Expand Up @@ -313,6 +313,21 @@ default void freezeParameters(boolean freeze) {
}
}

/**
* Freezes or unfreezes all parameters inside the block that pass the predicate.
*
* @param freeze true to mark as frozen rather than unfrozen
* @param pred true tests if the parameter should be updated
* @see Parameter#freeze(boolean)
*/
default void freezeParameters(boolean freeze, Predicate<Parameter> pred) {
for (Parameter parameter : getParameters().values()) {
if (pred.test(parameter)) {
parameter.freeze(freeze);
}
}
}

/**
* Validates that actual layout matches the expected layout.
*
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
import ai.djl.Model;
import ai.djl.ndarray.types.DataType;
import ai.djl.nn.Parameter;
import ai.djl.nn.Parameter.Type;
import ai.djl.pytorch.jni.JniUtils;
import ai.djl.training.Trainer;
import ai.djl.training.TrainingConfig;
Expand Down Expand Up @@ -189,7 +190,9 @@ public Trainer newTrainer(TrainingConfig trainingConfig) {
}
if (wasLoaded) {
// Unfreeze parameters if training directly
block.freezeParameters(false);
block.freezeParameters(
false,
p -> p.getType() != Type.RUNNING_MEAN && p.getType() != Type.RUNNING_VAR);
}
for (Pair<Initializer, Predicate<Parameter>> pair : initializer) {
if (pair.getKey() != null && pair.getValue() != null) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
package ai.djl.pytorch.engine;

import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDArrays;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.NDUtils;
Expand All @@ -24,6 +25,8 @@
import ai.djl.nn.recurrent.RNN;
import ai.djl.pytorch.jni.JniUtils;

import java.util.Arrays;
import java.util.Comparator;
import java.util.List;

/** {@code PtNDArrayEx} is the PyTorch implementation of the {@link NDArrayEx}. */
Expand Down Expand Up @@ -760,7 +763,152 @@ public NDList multiBoxDetection(
float nmsThreshold,
boolean forceSuppress,
int nmsTopK) {
throw new UnsupportedOperationException("Not implemented");
assert (inputs.size() == 3);

NDArray clsProb = inputs.get(0);
NDArray locPred = inputs.get(1);
NDArray anchors = inputs.get(2).reshape(new Shape(-1, 4));

NDManager ndManager = array.getManager();

NDArray variances = ndManager.create(new float[] {0.1f, 0.1f, 0.2f, 0.2f});

assert (variances.size() == 4); // << "Variance size must be 4";
final int numClasses = (int) clsProb.size(1);
final int numAnchors = (int) clsProb.size(2);
final int numBatches = (int) clsProb.size(0);

final float[] pAnchor = anchors.toFloatArray();

// [id, prob, xmin, ymin, xmax, ymax]
// TODO Move to NDArray-based implementation
NDList batchOutputs = new NDList();
for (int nbatch = 0; nbatch < numBatches; ++nbatch) {
float[][] outputs = new float[numAnchors][6];
final float[] pClsProb = clsProb.get(nbatch).toFloatArray();
final float[] pLocPred = locPred.get(nbatch).toFloatArray();

for (int i = 0; i < numAnchors; ++i) {
// find the predicted class id and probability
float score = -1;
int id = 0;
for (int j = 1; j < numClasses; ++j) {
float temp = pClsProb[j * numAnchors + i];
if (temp > score) {
score = temp;
id = j;
}
}

if (id > 0 && score < threshold) {
id = 0;
}

// [id, prob, xmin, ymin, xmax, ymax]
outputs[i][0] = id - 1;
outputs[i][1] = score;
int offset = i * 4;
float[] pAnchorRow4 = new float[4];
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is that possible to achieve below code under matrix calculation through using existing NDArray functions?

pAnchorRow4[0] = pAnchor[offset];
pAnchorRow4[1] = pAnchor[offset + 1];
pAnchorRow4[2] = pAnchor[offset + 2];
pAnchorRow4[3] = pAnchor[offset + 3];
float[] pLocPredRow4 = new float[4];
pLocPredRow4[0] = pLocPred[offset];
pLocPredRow4[1] = pLocPred[offset + 1];
pLocPredRow4[2] = pLocPred[offset + 2];
pLocPredRow4[3] = pLocPred[offset + 3];
float[] outRowLast4 =
transformLocations(
pAnchorRow4,
pLocPredRow4,
clip,
variances.toFloatArray()[0],
variances.toFloatArray()[1],
variances.toFloatArray()[2],
variances.toFloatArray()[3]);
outputs[i][2] = outRowLast4[0];
outputs[i][3] = outRowLast4[1];
outputs[i][4] = outRowLast4[2];
outputs[i][5] = outRowLast4[3];
}

outputs =
Arrays.stream(outputs)
.filter(o -> o[0] >= 0)
.sorted(Comparator.comparing(o -> -o[1]))
.toArray(float[][]::new);

// apply nms
for (int i = 0; i < outputs.length; ++i) {
for (int j = i + 1; j < outputs.length; ++j) {
if (outputs[i][0] == outputs[j][0]) {
float[] outputsIRow4 = new float[4];
float[] outputsJRow4 = new float[4];
outputsIRow4[0] = outputs[i][2];
outputsIRow4[1] = outputs[i][3];
outputsIRow4[2] = outputs[i][4];
outputsIRow4[3] = outputs[i][5];
outputsJRow4[0] = outputs[j][2];
outputsJRow4[1] = outputs[j][3];
outputsJRow4[2] = outputs[j][4];
outputsJRow4[3] = outputs[j][5];
float iou = calculateOverlap(outputsIRow4, outputsJRow4);
if (iou >= nmsThreshold) {
outputs[j][0] = -1;
}
}
}
}
batchOutputs.add(ndManager.create(outputs));
} // end iter batch

NDArray pOutNDArray = NDArrays.stack(batchOutputs);
NDList resultNDList = new NDList();
resultNDList.add(pOutNDArray);
assert (resultNDList.size() == 1);
return resultNDList;
}

private float[] transformLocations(
final float[] anchors,
final float[] locPred,
final boolean clip,
final float vx,
final float vy,
final float vw,
final float vh) {
float[] outRowLast4 = new float[4];
// transform predictions to detection results
float al = anchors[0];
float at = anchors[1];
float ar = anchors[2];
float ab = anchors[3];
float aw = ar - al;
float ah = ab - at;
float ax = (al + ar) / 2.f;
float ay = (at + ab) / 2.f;
float px = locPred[0];
float py = locPred[1];
float pw = locPred[2];
float ph = locPred[3];
float ox = px * vx * aw + ax;
float oy = py * vy * ah + ay;
float ow = (float) (Math.exp(pw * vw) * aw / 2);
float oh = (float) (Math.exp(ph * vh) * ah / 2);
outRowLast4[0] = clip ? Math.max(0f, Math.min(1f, ox - ow)) : (ox - ow);
outRowLast4[1] = clip ? Math.max(0f, Math.min(1f, oy - oh)) : (oy - oh);
outRowLast4[2] = clip ? Math.max(0f, Math.min(1f, ox + ow)) : (ox + ow);
outRowLast4[3] = clip ? Math.max(0f, Math.min(1f, oy + oh)) : (oy + oh);
return outRowLast4;
}

private float calculateOverlap(final float[] a, final float[] b) {
float w = Math.max(0f, Math.min(a[2], b[2]) - Math.max(a[0], b[0]));
float h = Math.max(0f, Math.min(a[3], b[3]) - Math.max(a[1], b[1]));
float i = w * h;
float u = (a[2] - a[0]) * (a[3] - a[1]) + (b[2] - b[0]) * (b[3] - b[1]) - i;
return u <= 0.f ? 0f : (i / u);
}

/** {@inheritDoc} */
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,6 @@ public class TrainPikachuTest {

@Test
public void testDetection() throws IOException, MalformedModelException, TranslateException {
TestRequirements.engine("MXNet");
TestRequirements.nightly();

String[] args;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
import ai.djl.nn.LambdaBlock;
import ai.djl.nn.SequentialBlock;
import ai.djl.repository.zoo.Criteria;
import ai.djl.repository.zoo.ModelZoo;
import ai.djl.repository.zoo.ZooModel;
import ai.djl.training.DefaultTrainingConfig;
import ai.djl.training.EasyTrain;
Expand Down Expand Up @@ -123,10 +124,8 @@ private TrainingConfig setupTrainingConfig() {
}

private ZooModel<Image, DetectedObjects> getModel() throws IOException, ModelException {
// SSD-pikachu model only available in MXNet
// TODO: Add PyTorch model to model zoo
TestUtils.requiresEngine("MXNet");

TestUtils.requiresEngine(
ModelZoo.getModelZoo("ai.djl.zoo").getSupportedEngines().toArray(String[]::new));
Criteria<Image, DetectedObjects> criteria =
Criteria.builder()
.optApplication(Application.CV.OBJECT_DETECTION)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,8 +43,8 @@ public String getGroupId() {
public Set<String> getSupportedEngines() {
Set<String> set = new HashSet<>();
set.add("MXNet");
set.add("PyTorch");
// TODO Currently WIP in supporting these two engines in the basic model zoo
// set.add("PyTorch");
// set.add("TensorFlow");
return set;
}
Expand Down