clip retrieval benchmark
pip install git+/~https://github.com/cat-state/clip_benchmark
For normalized embeddings extracted with clip-retrieval,
python -m clip_benchmark benchmark --img-embeds-file coco-openclip/img_emb/img_emb_0.npy --text-embeds-file coco-openclip/text_emb/text_emb_0.npy --sentence-embs sent.npy --n 50000 --dataset "mscoco/{00000..00059}.tar"
Sentence embeddings will be created and saved if not already present at that path.
To make the plots below run python -m clip_benchmark plots
To use it as a library:
from clip_benchmark import cross_modal_retrieval
results = cross_modal_retrieval(img_embeds, text_embeds, k=5)
print(results)
# { "text->img": <boolean array with True where that item matched the query>,
# "img->text": same as as above but for texts
# "text->img-idxs": the retrieved indicies into the img_embeds
# "img->text-idxs": same as above but for text_embeds }