New Functions
augment_drawdown()
: The augment_drawdown function calculates the drawdown metrics for a financial time series using either pandas or polars engine, and returns the augmented DataFrame with peak value, drawdown, and drawdown percentage columns.augment_rolling_risk_metrics()
: The augment_rolling_risk_metrics function calculates rolling risk-adjusted performance metrics for a financial time series using either pandas or polars engine, and returns the augmented DataFrame with columns for Sharpe Ratio, Sortino Ratio, and other metrics.augment_fip_momentum()
: Calculate the "Frog In The Pan" (FIP) momentum metric over one or more rolling windows using either pandas or polars engine, augmenting the DataFrame with FIP columns.augment_stochastic_oscillator
: Theaugment_stochastic_oscillator()
function calculates the Stochastic Oscillator (%K and %D) for a financial instrument using either pandas or polars engine, and returns the augmented DataFrame.augment_adx()
: Calculate Average Directional Index (ADX), +DI, and -DI for a financial time series to determine strength of trend.augment_hurst_exponent()
: Calculate the Hurst Exponent on a rolling window for a financial time series.augment_ewma_volatility()
: Calculate Exponentially Weighted Moving Average (EWMA) volatility for a financial time series.augment_regime_detection()
: Detect regimes in a financial time series using a specified method (e.g., HMM).
Bug Fixes and Speed Improvements
summarize_by_time()
: polars engine rebuild. Columns should match pandas engine.__init__.py
: updated to fix circular importsget_date_summary()
: Fixed issues with polar tzaugment_hilbert()
: Improve polars engine and fix error with groupby()augment_ewm()
: fix examplefrom pytimetk import augment_ewm
test_plot_timeseries
: Fix broken test
Full Changelog: v1.1.2...v1.2.0