scPrinter is a computational framework for the multi-scale footprinting analysis of single-cell ATAC-seq data. scPrinter is designed to identify and visualize the regulatory elements that drive cell-type-specific gene expression programs through footprinting. scPrinter uses a deep learning model to predict the activity of transcription factors from single-cell ATAC-seq data. scPrinter also provides a suite of visualization tools to explore the calculated multi-scale footprints.
Typical installation time: within 30mins
Please install pytorch (with gpu-compatibility if you will be using GPU) before installing scPrinter. You can install pytorch by following the instructions on the official website: https://pytorch.org/get-started/locally/. A quick installation of scPrinter can be done by running the following command, and most of the dependencies would be resolved automatically.
# Clone this repository
$ git clone /~https://github.com/buenrostrolab/scPrinter
# Go into the repository
$ cd scPrinter
# pip install
pip install ./
A step by step guide that I use to setup a new environment is as follows:
mamba create -n scprinter -c rapidsai -c pytorch -c nvidia -c conda-forge -c bioconda pytorch torchvision torchaudio pytorch-cuda=12.1 jupyterlab ipywidgets ipykernel joblib 'llvm-openmp<16' htop nvtop wandb rapids=24.06 python=3.11.* 'cuda-version>=12.0,<=12.2' cupy rmm 'anndata>0.8.0' python-kaleido multiprocess natsort numpy pandas plotly polars pooch 'igraph>=0.10.4' pynndescent pyarrow pyfaidx rustworkx scipy scikit-learn tqdm typing_extensions umap-learn texttable setuptools-rust pkg-config openblas pyranges biopython dna_features_viewer 'scanpy>=1.9' pyBigWig gffutils rust cmake beartype jupyterlab ipywidgets jupyterlab_widgets ipykernel macs2 logomaker shap transformers gcc weasyprint libxml2 libxslt hdf5plugin leidenalg imagemagick
mamba activate scprinter
test the following in python:
import torch
torch.cuda.is_available()
import cupy
a = cupy.zeros((1000, 1000)) # check gpu usage
pip install the following because the conda version results in version incompatibility.
pip install bioframe pysam pybedtools
mamba install -c bioconda MACS3 cykhash hmmlearn=0.3.0 python-igraph==0.11.6 pandas==2.1.1 polars==0.20.31 pyfaidx==0.7.2.2
pip install MOODS-python snapatac2 ema_pytorch modisco-lite
git clone /~https://github.com/austintwang/finemo_gpu.git
cd finemo_gpu
pip install ./
if you can manage to install meme using other approach, feel free to do so.
wget https://meme-suite.org/meme/meme-software/5.5.6/meme-5.5.6.tar.gz
tar zxf meme-5.5.6.tar.gz
cd meme-5.5.6
./configure --prefix=/home/rzhang/software/meme
make
make install
Finally scprinter.
# Clone this repository
$ git clone /~https://github.com/buenrostrolab/scPrinter
# Go into the repository
$ cd scPrinter
# pip install
pip install ./
For personal environment, you don't need to do this, for shared environment make everyone use the same cache dir
mamba env config vars set SCPRINTER_DATA=/n/holylfs06/LABS/buenrostro_lab/Lab/.cache/scprinter/
See documentation and tutorials at https://ruochiz.com/scprinter_doc/
If you use scPrinter in your research, please cite the following paper:
adding bibtex later
MIT