-
Notifications
You must be signed in to change notification settings - Fork 718
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add simplified elliptic curve code generator.
Add a tool to generate and/or verify NIST curve boilerplate. Sync the existing P-256 and P-384 code with the generator.
- Loading branch information
1 parent
3565fe8
commit 9fe0ad7
Showing
3 changed files
with
358 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,348 @@ | ||
# Copyright 2023 Brian Smith. | ||
# | ||
# Permission to use, copy, modify, and/or distribute this software for any | ||
# purpose with or without fee is hereby granted, provided that the above | ||
# copyright notice and this permission notice appear in all copies. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS" AND BRIAN SMITH AND THE AUTHORS DISCLAIM | ||
# ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES | ||
# OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL BRIAN SMITH OR THE AUTHORS | ||
# BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY | ||
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN | ||
# AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
|
||
# Usage: python lib/gfp_generate.py --outdir <dir> | ||
|
||
from textwrap import wrap | ||
|
||
limb_bits = 32 | ||
|
||
curve_template = """ | ||
// Copyright 2016-2023 Brian Smith. | ||
// | ||
// Permission to use, copy, modify, and/or distribute this software for any | ||
// purpose with or without fee is hereby granted, provided that the above | ||
// copyright notice and this permission notice appear in all copies. | ||
// | ||
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES | ||
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY | ||
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | ||
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | ||
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
use super::{ | ||
elem::{binary_op, binary_op_assign}, | ||
elem_sqr_mul, elem_sqr_mul_acc, Modulus, *, | ||
}; | ||
pub static COMMON_OPS: CommonOps = CommonOps { | ||
num_limbs: %(bits)s / LIMB_BITS, | ||
q: Modulus { | ||
p: limbs_from_hex("%(q)x"), | ||
rr: limbs_from_hex("%(q_rr)x"), | ||
}, | ||
n: Elem::from_hex("%(n)x"), | ||
a: Elem::from_hex("%(a)x"), | ||
b: Elem::from_hex("%(b)x"), | ||
elem_mul_mont: p%(bits)s_elem_mul_mont, | ||
elem_sqr_mont: p%(bits)s_elem_sqr_mont, | ||
point_add_jacobian_impl: p%(bits)s_point_add, | ||
}; | ||
pub(super) static GENERATOR: (Elem<R>, Elem<R>) = ( | ||
Elem::from_hex("%(Gx)x"), | ||
Elem::from_hex("%(Gy)x"), | ||
); | ||
pub static PRIVATE_KEY_OPS: PrivateKeyOps = PrivateKeyOps { | ||
common: &COMMON_OPS, | ||
elem_inv_squared: p%(bits)s_elem_inv_squared, | ||
point_mul_base_impl: p%(bits)s_point_mul_base_impl, | ||
point_mul_impl: p%(bits)s_point_mul, | ||
}; | ||
fn p%(bits)d_elem_inv_squared(a: &Elem<R>) -> Elem<R> { | ||
// Calculate a**-2 (mod q) == a**(q - 3) (mod q) | ||
// | ||
// The exponent (q - 3) is: | ||
// | ||
// %(q_minus_3)s | ||
#[inline] | ||
fn sqr_mul(a: &Elem<R>, squarings: usize, b: &Elem<R>) -> Elem<R> { | ||
elem_sqr_mul(&COMMON_OPS, a, squarings, b) | ||
} | ||
#[inline] | ||
fn sqr_mul_acc(a: &mut Elem<R>, squarings: usize, b: &Elem<R>) { | ||
elem_sqr_mul_acc(&COMMON_OPS, a, squarings, b) | ||
} | ||
let b_1 = &a; | ||
todo!(); | ||
acc | ||
} | ||
fn p%(bits)s_point_mul_base_impl(a: &Scalar) -> Point { | ||
// XXX: Not efficient. TODO: Precompute multiples of the generator. | ||
PRIVATE_KEY_OPS.point_mul(a, &GENERATOR) | ||
} | ||
pub static PUBLIC_KEY_OPS: PublicKeyOps = PublicKeyOps { | ||
common: &COMMON_OPS, | ||
}; | ||
pub static SCALAR_OPS: ScalarOps = ScalarOps { | ||
common: &COMMON_OPS, | ||
scalar_inv_to_mont_impl: p%(bits)s_scalar_inv_to_mont, | ||
scalar_mul_mont: p%(bits)s_scalar_mul_mont, | ||
}; | ||
pub static PUBLIC_SCALAR_OPS: PublicScalarOps = PublicScalarOps { | ||
scalar_ops: &SCALAR_OPS, | ||
public_key_ops: &PUBLIC_KEY_OPS, | ||
twin_mul: |g_scalar, p_scalar, p_xy| { | ||
twin_mul_inefficient(&PRIVATE_KEY_OPS, g_scalar, p_scalar, p_xy) | ||
}, | ||
q_minus_n: Elem::from_hex("%(q_minus_n)x"), | ||
}; | ||
pub static PRIVATE_SCALAR_OPS: PrivateScalarOps = PrivateScalarOps { | ||
scalar_ops: &SCALAR_OPS, | ||
oneRR_mod_n: Scalar::from_hex("%(oneRR_mod_n)x"), | ||
}; | ||
fn p%(bits)s_scalar_inv_to_mont(a: &Scalar<Unencoded>) -> Scalar<R> { | ||
// Calculate the modular inverse of scalar |a| using Fermat's Little | ||
// Theorem: | ||
// | ||
// a**-1 (mod n) == a**(n - 2) (mod n) | ||
// | ||
// The exponent (n - 2) is: | ||
// | ||
// %(n_minus_2)s | ||
fn mul(a: &Scalar<R>, b: &Scalar<R>) -> Scalar<R> { | ||
binary_op(p%(bits)d_scalar_mul_mont, a, b) | ||
} | ||
fn sqr(a: &Scalar<R>) -> Scalar<R> { | ||
binary_op(p%(bits)d_scalar_mul_mont, a, a) | ||
} | ||
fn sqr_mut(a: &mut Scalar<R>) { | ||
unary_op_from_binary_op_assign(p%(bits)d_scalar_mul_mont, a); | ||
} | ||
// Returns (`a` squared `squarings` times) * `b`. | ||
fn sqr_mul(a: &Scalar<R>, squarings: usize, b: &Scalar<R>) -> Scalar<R> { | ||
debug_assert!(squarings >= 1); | ||
let mut tmp = sqr(a); | ||
for _ in 1..squarings { | ||
sqr_mut(&mut tmp); | ||
} | ||
mul(&tmp, b) | ||
} | ||
// Sets `acc` = (`acc` squared `squarings` times) * `b`. | ||
fn sqr_mul_acc(acc: &mut Scalar<R>, squarings: usize, b: &Scalar<R>) { | ||
debug_assert!(squarings >= 1); | ||
for _ in 0..squarings { | ||
sqr_mut(acc); | ||
} | ||
binary_op_assign(p%(bits)d_scalar_mul_mont, acc, b) | ||
} | ||
fn to_mont(a: &Scalar<Unencoded>) -> Scalar<R> { | ||
static N_RR: Scalar<Unencoded> = Scalar { | ||
limbs: PRIVATE_SCALAR_OPS.oneRR_mod_n.limbs, | ||
m: PhantomData, | ||
encoding: PhantomData, | ||
}; | ||
binary_op(p%(bits)s_scalar_mul_mont, a, &N_RR) | ||
} | ||
// Indexes into `d`. | ||
const B_1: usize = 0; | ||
todo!(); | ||
const DIGIT_COUNT: usize = todo!(); | ||
let mut d = [Scalar::zero(); DIGIT_COUNT]; | ||
d[B_1] = to_mont(a); | ||
let b_10 = sqr(&d[B_1]); | ||
for i in B_11..DIGIT_COUNT { | ||
d[i] = mul(&d[i - 1], &b_10); | ||
} | ||
todo!(); | ||
// The rest of the exponent, in binary, is: | ||
// | ||
// TODO | ||
static REMAINING_WINDOWS: [(u8, u8); 39] = [ | ||
todo!() | ||
]; | ||
for &(squarings, digit) in &REMAINING_WINDOWS[..] { | ||
sqr_mul_acc(&mut acc, usize::from(squarings), &d[usize::from(digit)]); | ||
} | ||
acc | ||
} | ||
unsafe extern "C" fn p%(bits)s_elem_sqr_mont( | ||
r: *mut Limb, // [COMMON_OPS.num_limbs] | ||
a: *const Limb, // [COMMON_OPS.num_limbs] | ||
) { | ||
// XXX: Inefficient. TODO: Make a dedicated squaring routine. | ||
p%(bits)d_elem_mul_mont(r, a, a); | ||
} | ||
prefixed_extern! { | ||
fn p%(bits)s_elem_mul_mont( | ||
r: *mut Limb, // [COMMON_OPS.num_limbs] | ||
a: *const Limb, // [COMMON_OPS.num_limbs] | ||
b: *const Limb, // [COMMON_OPS.num_limbs] | ||
); | ||
fn p%(bits)s_point_add( | ||
r: *mut Limb, // [3][COMMON_OPS.num_limbs] | ||
a: *const Limb, // [3][COMMON_OPS.num_limbs] | ||
b: *const Limb, // [3][COMMON_OPS.num_limbs] | ||
); | ||
fn p%(bits)s_point_mul( | ||
r: *mut Limb, // [3][COMMON_OPS.num_limbs] | ||
p_scalar: *const Limb, // [COMMON_OPS.num_limbs] | ||
p_x: *const Limb, // [COMMON_OPS.num_limbs] | ||
p_y: *const Limb, // [COMMON_OPS.num_limbs] | ||
); | ||
fn p%(bits)s_scalar_mul_mont( | ||
r: *mut Limb, // [COMMON_OPS.num_limbs] | ||
a: *const Limb, // [COMMON_OPS.num_limbs] | ||
b: *const Limb, // [COMMON_OPS.num_limbs] | ||
); | ||
}""" | ||
|
||
|
||
import math | ||
import random | ||
import sys | ||
|
||
def to_montgomery(x, p): | ||
return (x * 2**p.bit_length()) % p | ||
|
||
# http://rosettacode.org/wiki/Modular_inverse#Python | ||
def modinv(a, m): | ||
def extended_gcd(aa, bb): | ||
last_rem, rem = abs(aa), abs(bb) | ||
x, last_x, y, last_y = 0, 1, 1, 0 | ||
while rem: | ||
last_rem, (quotient, rem) = rem, divmod(last_rem, rem) | ||
x, last_x = last_x - quotient * x, x | ||
y, last_y = last_y - quotient * y, y | ||
return (last_rem, | ||
last_x * (-1 if aa < 0 else 1), | ||
last_y * (-1 if bb < 0 else 1)) | ||
|
||
g, x, y = extended_gcd(a, m) | ||
if g != 1: | ||
raise ValueError | ||
return x % m | ||
|
||
def format_curve_name(g): | ||
return "p%d" % g["q"].bit_length() | ||
|
||
def format_prime_curve(g): | ||
q = g["q"] | ||
n = g["n"] | ||
if g["a"] != -3: | ||
raise ValueError("Only curves where a == -3 are supported.") | ||
if g["cofactor"] != 1: | ||
raise ValueError("Only curves with cofactor 1 are supported.") | ||
if q != g["q_formula"]: | ||
raise ValueError("Polynomial representation of q doesn't match the " | ||
"literal version given in the specification.") | ||
if n != g["n_formula"]: | ||
raise ValueError("Polynomial representation of n doesn't match the " | ||
"literal version given in the specification.") | ||
limb_count = (g["q"].bit_length() + limb_bits - 1) // limb_bits | ||
name = format_curve_name(g) | ||
|
||
q_minus_3 = "\\\n// ".join(wrap(hex(q - 3), 66)) | ||
n_minus_2 = "\\\n// ".join(wrap(hex(n - 2), 66)) | ||
|
||
return curve_template % { | ||
"bits": g["q"].bit_length(), | ||
"name": name, | ||
"q" : q, | ||
"q_rr": to_montgomery(2**q.bit_length(), q), | ||
"q_minus_3": q_minus_3, | ||
"n" : n, | ||
"one" : to_montgomery(1, q), | ||
"a" : to_montgomery(g["a"], q), | ||
"b" : to_montgomery(g["b"], q), | ||
"Gx" : to_montgomery(g["Gx"], q), | ||
"Gy" : to_montgomery(g["Gy"], q), | ||
"q_minus_n" : q - n, | ||
"oneRR_mod_n": to_montgomery(1, n)**2 % n, | ||
"n_minus_2": n_minus_2, | ||
} | ||
|
||
# The curve parameters are from | ||
# https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf. | ||
# |q_formula| and |n_formula| are given in the polynomial representation so that | ||
# their special structures are more evident. |q| and |n| are the hex literal | ||
# representations of the same values given in the specs. Both are provided so that | ||
# |generate_prime_curve_code| can verify that |q| and |n| are correct. | ||
|
||
p256 = { | ||
"q_formula": 2**256 - 2**224 + 2**192 + 2**96 - 1, | ||
"q" : 115792089210356248762697446949407573530086143415290314195533631308867097853951, | ||
"n_formula": 2**256 - 2**224 + 2**192 - 2**128 + 0xbce6faad_a7179e84_f3b9cac2_fc632551, | ||
"n" : 0xffffffff_00000000_ffffffff_ffffffff_bce6faad_a7179e84_f3b9cac2_fc632551, | ||
"a": -3, | ||
"b": 0x5ac635d8_aa3a93e7_b3ebbd55_769886bc_651d06b0_cc53b0f6_3bce3c3e_27d2604b, | ||
"Gx": 0x6b17d1f2_e12c4247_f8bce6e5_63a440f2_77037d81_2deb33a0_f4a13945_d898c296, | ||
"Gy": 0x4fe342e2_fe1a7f9b_8ee7eb4a_7c0f9e16_2bce3357_6b315ece_cbb64068_37bf51f5, | ||
"cofactor": 1, | ||
} | ||
|
||
p384 = { | ||
"q_formula": 2**384 - 2**128 - 2**96 + 2**32 - 1, | ||
"q" : 0xffffffff_ffffffff_ffffffff_ffffffff_ffffffff_ffffffff_ffffffff_fffffffe_ffffffff_00000000_00000000_ffffffff, | ||
"n_formula": 2**384 - 2**192 + 0xc7634d81_f4372ddf_581a0db2_48b0a77a_ecec196a_ccc52973, | ||
"n" : 0xffffffff_ffffffff_ffffffff_ffffffff_ffffffff_ffffffff_c7634d81_f4372ddf_581a0db2_48b0a77a_ecec196a_ccc52973, | ||
"a": -3, | ||
"b": 0xb3312fa7_e23ee7e4_988e056b_e3f82d19_181d9c6e_fe814112_0314088f_5013875a_c656398d_8a2ed19d_2a85c8ed_d3ec2aef, | ||
"Gx": 0xaa87ca22_be8b0537_8eb1c71e_f320ad74_6e1d3b62_8ba79b98_59f741e0_82542a38_5502f25d_bf55296c_3a545e38_72760ab7, | ||
"Gy": 0x3617de4a_96262c6f_5d9e98bf_9292dc29_f8f41dbd_289a147c_e9da3113_b5f0b8c0_0a60b1ce_1d7e819d_7a431d7c_90ea0e5f, | ||
"cofactor": 1, | ||
} | ||
|
||
import os | ||
import subprocess | ||
|
||
def generate_prime_curve_file(g, out_dir): | ||
code = format_prime_curve(g) | ||
os.makedirs(out_dir, exist_ok=True) | ||
out_path = os.path.join(out_dir, "%s.rs" % format_curve_name(g)) | ||
with open(out_path, "wb") as f: | ||
f.write(code.encode("utf-8")) | ||
subprocess.run(["rustfmt", out_path]) | ||
|
||
|
||
for curve in [p256, p384]: | ||
generate_prime_curve_file(curve, "target/curves") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.