Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ONNX][#8838] QLinearSigmoid contrib op and Bug Fix for DequantizeLinear #9028

Merged
merged 5 commits into from
Sep 17, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -3254,6 +3254,8 @@ def _impl_v10(cls, inputs, attr, params):
def _impl_v13(cls, inputs, attr, params):
data, scale, zp = inputs
axis = attr.get("axis", 1)
if len(infer_shape(data)) <= 1:
axis = 0
return _qnn.op.dequantize(data, scale, _op.cast(zp, "int32"), axis)


Expand Down Expand Up @@ -3428,6 +3430,28 @@ def _impl_v10(cls, inputs, attr, params):
return _qnn.op.quantize(out, y_scale, y_zero_point, out_dtype=dtype)


class QLinearSigmoid(OnnxOpConverter):
"""Operator converter for QLinearSigmoid from Microsoft onnxruntime contrib opset."""

@classmethod
def _impl_v10(cls, inputs, attr, params):
x = inputs[0]
x_scale = get_scalar(inputs[1], params)
x_zero_point = get_scalar(inputs[2], params, "int32")
y_scale = fold_constant(get_scalar(inputs[3], params))
y_zero_point = get_scalar(inputs[4], params, "int32")

dtype = infer_type(x).checked_type.dtype

## Apparently, onnxruntime doesn't do this op in integer, they dequantize to fp32
## and then requantize after:
## /~https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/core/
## providers/dml/DmlExecutionProvider/src/GraphTransformer.cpp#L245
x = _qnn.op.dequantize(x, x_scale, x_zero_point)
out = _op.sigmoid(x)
return _qnn.op.quantize(out, y_scale, y_zero_point, out_dtype=dtype)


class QLinearConcat(OnnxOpConverter):
"""Operator converter for QLinearConcat from Microsoft onnxruntime contrib opset."""

Expand Down Expand Up @@ -4084,6 +4108,7 @@ def _get_convert_map(opset):
"QLinearConcat": QLinearConcat.get_converter(opset),
"QLinearAdd": QLinearAdd.get_converter(opset),
"QLinearMul": QLinearMul.get_converter(opset),
"QLinearSigmoid": QLinearSigmoid.get_converter(opset),
"ConvInteger": ConvInteger.get_converter(opset),
"QLinearAveragePool": QLinearAveragePool.get_converter(opset),
"QLinearGlobalAveragePool": QLinearGlobalAveragePool.get_converter(opset),
Expand Down
27 changes: 27 additions & 0 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -5542,11 +5542,38 @@ def verify_qlinearmul(a_shape, b_shape, c_shape):
model = helper.make_model(graph, producer_name="qlinearmul_test")
quantize_and_verify_with_ort(model, input_names, [a_shape, b_shape], target, dev)

verify_qlinearmul([7], [7], [7])
verify_qlinearmul([4, 2], [4, 2], [4, 2])
verify_qlinearmul([4, 2], [2], [4, 2])
verify_qlinearmul([5, 1, 7], [2, 7], [5, 2, 7])


@tvm.testing.parametrize_targets
def test_qlinearsigmoid(target, dev):
def verify_qlinearsigmoid(a_shape):

a_array = np.random.random(a_shape).astype("float32")

input_nodes = [helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape))]

input_values = [a_array]

node = helper.make_node("Sigmoid", ["a"], ["B"])
graph = helper.make_graph(
[node],
"qlinearsigmoid_test",
inputs=input_nodes,
outputs=[helper.make_tensor_value_info("B", TensorProto.FLOAT, list(a_shape))],
)
model = helper.make_model(graph, producer_name="qlinearsigmoid_test")
quantize_and_verify_with_ort(model, ["a"], [a_shape], target, dev)

verify_qlinearsigmoid([4, 2])
verify_qlinearsigmoid([5])
verify_qlinearsigmoid([3, 4, 5])
verify_qlinearsigmoid([])


@tvm.testing.parametrize_targets
def test_random_uniform(target, dev):
def get_random_uniform(shape, dtype="float32", high=1.0, low=0.0, seed=None):
Expand Down