Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.x] add roberta to ONNX tests #19996

Merged
merged 1 commit into from
Mar 9, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 60 additions & 1 deletion tests/python-pytest/onnx/test_onnxruntime.py
Original file line number Diff line number Diff line change
Expand Up @@ -555,8 +555,67 @@ def load_video(filepath):
finally:
shutil.rmtree(tmp_path)


@with_seed()
@pytest.mark.parametrize('model', ['bert_12_768_12'])
@pytest.mark.parametrize('model_name', ['roberta_24_1024_16', 'roberta_12_768_12'])
def test_roberta_inference_onnxruntime(tmp_path, model_name):
tmp_path = str(tmp_path)
try:
import gluonnlp as nlp
ctx = mx.cpu(0)

dataset= 'openwebtext_ccnews_stories_books_cased'#'book_corpus_wiki_en_uncased'
model, _ = nlp.model.get_model(
name=model_name,
ctx=ctx,
pretrained=True,
use_decoder=True,
dataset_name=dataset)

model.hybridize(static_alloc=False)

batch = 2
seq_length = 32
num_masked_positions = 1
inputs = mx.nd.random.uniform(0, 30522, shape=(batch, seq_length), dtype='float32', ctx=ctx)
valid_length = mx.nd.array([seq_length] * batch, dtype='float32', ctx=ctx)
masked_positions = mx.nd.random.uniform(0, 32, shape=(batch, num_masked_positions),
dtype='float32', ctx=ctx).astype('int32')

sequence_outputs, attention_outputs= model(inputs, valid_length, masked_positions)

model_dir = f'roberta_model'
if not os.path.isdir(model_dir):
os.mkdir(model_dir)

prefix = '%s/%s' % (model_dir, model_name)
model.export(prefix)

sym_file = "%s-symbol.json" % prefix
params_file = "%s-0000.params" % prefix
onnx_file = "%s.onnx" % prefix
input_shapes = [(batch, seq_length), (batch,), (batch, num_masked_positions)]
converted_model_path = mx.contrib.onnx.export_model(sym_file, params_file, input_shapes,
[np.float32, np.float32, np.int32],
onnx_file, verbose=True)

sess_options = onnxruntime.SessionOptions()
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
sess = onnxruntime.InferenceSession(onnx_file, sess_options)

in_tensors = [inputs, valid_length, masked_positions]
input_dict = dict((sess.get_inputs()[i].name, in_tensors[i].asnumpy()) for i in range(len(in_tensors)))
pred = sess.run(None, input_dict)

assert_almost_equal(sequence_outputs, pred[0])
assert_almost_equal(attension_outputs, pred[1])

finally:
shutil.rmtree(tmp_path)


@with_seed()
@pytest.mark.parametrize('model', ['bert_12_768_12', 'bert_24_1024_16'])
def test_bert_inference_onnxruntime(tmp_path, model):
tmp_path = str(tmp_path)
try:
Expand Down