Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.8][Port PR] Port padding fix #19167

Merged
merged 1 commit into from
Sep 17, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
119 changes: 94 additions & 25 deletions src/operator/numpy/np_pad_op-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -509,13 +509,22 @@ struct min_pad {
}
};


template <typename xpu, int req>
template <typename xpu, int req, int ndim>
struct pad_grad {
template<typename DType>
MSHADOW_XINLINE static void Map(index_t i, DType *out, const DType *a){
using namespace mxnet_op;
KERNEL_ASSIGN(out[i], req, 1);
template<typename DType>
MSHADOW_XINLINE static void Map(index_t i, DType *out, const DType *a,
const index_t* ishape,
const index_t* oshape,
mshadow::Shape<ndim*2> width) {
auto j = uunravel<ndim>(i, oshape);
size_t m;
index_t* indexwidth = width.shape_;
index_t* indexshape = j.shape_;
for (m = 0; m < ndim; m++) {
indexshape[m] = indexshape[m] + indexwidth[m * 2];
}
index_t l = rravel<ndim>(j, ishape);
KERNEL_ASSIGN(out[i], req, a[l]);
}
};

Expand Down Expand Up @@ -689,20 +698,43 @@ void NumpyPadOpImpl(const TBlob& in_data,
template<typename xpu>
void NumpyPadOpBackImpl(const TBlob& in_data,
const TBlob& out_data,
index_t* ishape,
index_t* oshape,
index_t dsize,
const NumpyPadParam& param,
const std::vector<OpReqType>& req,
mxnet_op::Stream<xpu> *s) {
using namespace mxnet_op;
using namespace mshadow;
MSHADOW_TYPE_SWITCH_WITH_BOOL(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<pad_grad<xpu, req_type>, xpu>::Launch(
s, dsize, out_data.dptr<DType>(), in_data.dptr<DType>());
});
});
using namespace mxnet_op;
using namespace mshadow;
int mode = param.mode;
int ndim = in_data.ndim();
if (mode != 0) {
LOG(FATAL) << "Other modes are not supported. ";
}
MXNET_NDIM_SWITCH(ndim, NDim, {
mshadow::Shape<NDim*2> width;
int dimcounter = 0;
index_t* odptr = reinterpret_cast<index_t*>(oshape);
if (ndim == 1) {
width[0] = param.pad_width[0][0];
width[1] = param.pad_width[1][0];
} else {
for (dimcounter = 0; dimcounter < NDim; dimcounter++) {
width[dimcounter*2] = param.pad_width[dimcounter][0];
width[dimcounter*2 + 1] = param.pad_width[dimcounter][1];
}
}
index_t* idptr = reinterpret_cast<index_t*>(ishape);
MSHADOW_TYPE_SWITCH_WITH_BOOL(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<pad_grad<xpu, req_type, NDim>, xpu>::Launch(
s, dsize, out_data.dptr<DType>(), in_data.dptr<DType>(),
idptr, odptr, width);
});
});
})
}


template<typename xpu>
void NumpyPadOpForward(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
Expand All @@ -715,7 +747,8 @@ void NumpyPadOpForward(const nnvm::NodeAttrs& attrs,
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
CHECK_EQ(req.size(), 1U);
CHECK_EQ(req[0], kWriteTo);
CHECK(req[0] != kNullOp);
CHECK(req[0] != kWriteInplace);
Stream<xpu> *s = ctx.get_stream<xpu>();
const TBlob& in_data = inputs[0];
const TBlob& out_data = outputs[0];
Expand Down Expand Up @@ -761,15 +794,51 @@ void NumpyPadOpBackward(const nnvm::NodeAttrs& attrs,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mxnet_op;
using namespace mshadow;
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
Stream<xpu> *s = ctx.get_stream<xpu>();
const TBlob& in_data = inputs[0];
const TBlob& out_data = outputs[0];
NumpyPadOpBackImpl<xpu>(in_data, out_data,
out_data.Size(), req, s);
MXNET_NDIM_SWITCH(inputs[0].ndim(), NDim, {
using namespace mxnet_op;
using namespace mshadow;
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
CHECK_EQ(req.size(), 1U);
CHECK(req[0] != kNullOp);
CHECK(req[0] != kWriteInplace);
Stream<xpu> *s = ctx.get_stream<xpu>();
const TBlob& in_data = inputs[0];
const TBlob& out_data = outputs[0];
size_t ts = in_data.ndim();
size_t count;
mshadow::Shape<NDim> inshape;
for (count = 0; count < ts; count++) {
inshape[count] = static_cast<index_t>((in_data.shape_)[count]);
}

Tensor<xpu, 1, index_t> tsp = ctx.requested[0].
get_space_typed<xpu, 1, index_t>(Shape1(2*ts), s);
Tensor<cpu, 1, index_t> ta(reinterpret_cast<index_t*>(inshape.shape_),
Shape1(ts), ctx.get_stream<cpu>());
Tensor<xpu, 1, index_t> ti(reinterpret_cast<index_t*>(tsp.dptr_),
Shape1(ts), ctx.get_stream<xpu>());
mshadow::Copy(ti, ta, ctx.get_stream<xpu>());

mshadow::Shape<NDim> outshape;
for (count = 0; count < ts; count++) {
outshape[count] = static_cast<index_t>((out_data.shape_)[count]);
}
index_t* wcp = tsp.dptr_;
wcp += ts;
Tensor<cpu, 1, index_t> tb(reinterpret_cast<index_t*>(outshape.shape_),
Shape1(ts), ctx.get_stream<cpu>());
Tensor<xpu, 1, index_t> to(reinterpret_cast<index_t*>(wcp), Shape1(ts),
ctx.get_stream<xpu>());
mshadow::Copy(to, tb, ctx.get_stream<xpu>());
const NumpyPadParam& param = nnvm::get<NumpyPadParam>(attrs.parsed);

index_t* wt = reinterpret_cast<index_t*>(to.dptr_);
index_t* wi = reinterpret_cast<index_t*>(ti.dptr_);

NumpyPadOpBackImpl<xpu>(in_data, out_data, wi,
wt, out_data.Size(), param, req, s);
})
}

} // namespace op
Expand Down
35 changes: 22 additions & 13 deletions tests/python/unittest/test_numpy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -7167,19 +7167,28 @@ def hybrid_forward(self,F,A,**kwargs):
assert_almost_equal(mx_out.asnumpy(), np_out, rtol = rtol, atol = atol)

# test gradient
mx_out.backward()
np_backward = np.ones(shape)
assert_almost_equal(x.grad.asnumpy(), np_backward, rtol=rtol, atol=atol)

# test imperative once again

if(m != 'constant'):
np_out = _np.pad(x.asnumpy(), pw, mode=m)
mx_out = np.pad(x, pw, mode=m)
else:
np_out = _np.pad(x.asnumpy(), pw, constant_values=0, mode=m)
mx_out = np.pad(x, pw, mode=m, constant_values=0)
assert_almost_equal(mx_out.asnumpy(), np_out, rtol=rtol, atol=atol)
if m == "constant":
ctx = mx.context.current_context()
x = mx.np.random.uniform(-1.0, 1.0, size=shape)
x = mx.np.array(x, ctx=ctx)
for grad_req in ['write', 'add']:
x.attach_grad(grad_req)
if grad_req == 'add':
init_grad = mx.np.random.uniform(-1.0, 1.0, size=shape, ctx=ctx)
x.grad[:] = init_grad
with mx.autograd.record():
mx_out = mx.np.pad(x, pad_width=pw, mode="constant")
out_grad = mx.np.random.normal(0, 1, mx_out.shape)
out_grad = mx.np.array(out_grad, ctx=ctx)
loss = mx_out * out_grad
loss = loss.sum()
loss.backward()
gt_in_grad = mx.np.pad(mx.np.ones_like(x.grad), pad_width=pw, mode="constant") * mx.np.array(out_grad, ctx=ctx)
mx_grad = x.grad
if grad_req == 'add':
assert_almost_equal(mx.np.pad(mx_grad - init_grad, pad_width=pw, mode="constant"), gt_in_grad.asnumpy(), rtol=rtol, atol=atol)
else:
assert_almost_equal(mx.np.pad(mx_grad, pad_width=pw, mode="constant"), gt_in_grad.asnumpy(), rtol=rtol, atol=atol)


@with_seed()
Expand Down