Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Safe LayerNorm #15002

Merged
merged 3 commits into from
May 22, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 68 additions & 34 deletions src/operator/nn/layer_norm-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -116,8 +116,13 @@ void LayerNormComputeGeneral(const nnvm::NodeAttrs& attrs,
// Calculate mean
MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, {
BROADCAST_NDIM_SWITCH(red_dst_shape.ndim(), NDim, {
broadcast::Reduce<red::sum, NDim, DType, op::mshadow_op::identity>(
s, mean_data, req[0], workspace, in_data);
if (dmlc::GetEnv("MXNET_SAFE_ACCUMULATION", false)) {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::identity, false>(
s, mean_data, req[0], workspace, in_data);
} else {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::identity, true>(
s, mean_data, req[0], workspace, in_data);
}
Tensor<xpu, 1, DType> mean_data_tensor = mean_data.FlatTo1D<xpu, DType>(s);
mean_data_tensor /= scalar<DType>(channel_size);
});
Expand All @@ -130,25 +135,30 @@ void LayerNormComputeGeneral(const nnvm::NodeAttrs& attrs,
const TBlob centered_out = outputs[0].reshape(red_src_shape);
MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, {
BROADCAST_NDIM_SWITCH(red_dst_shape.ndim(), NDim, {
broadcast::Reduce<red::sum, NDim, DType, op::mshadow_op::square>(
s, std_data, req[0], workspace, centered_out);
if (dmlc::GetEnv("MXNET_SAFE_ACCUMULATION", false)) {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::square, false>(
s, std_data, req[0], workspace, centered_out);
} else {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::square, true>(
s, std_data, req[0], workspace, centered_out);
}
Tensor<xpu, 1, DType> std_data_tensor = std_data.FlatTo1D<xpu, DType>(s);
std_data_tensor = F<mshadow_op::square_root>(std_data_tensor / scalar<DType>(channel_size)
+ scalar<DType>(param.eps));
});
});
// Calculate data = data / std
BinaryBroadcastCompute<xpu, op::mshadow_op::div>(attrs, ctx,
{outputs[0], outputs[layernorm::kStd]},
{kWriteTo}, {outputs[0]});
BinaryBroadcastCompute<xpu, mshadow_op::div>(attrs, ctx,
{outputs[0], outputs[layernorm::kStd]},
{kWriteTo}, {outputs[0]});
// Calculate data = data * gamma
BinaryBroadcastCompute<xpu, op::mshadow_op::mul>(attrs, ctx,
{outputs[0], gamma},
{kWriteTo}, {outputs[0]});
BinaryBroadcastCompute<xpu, mshadow_op::mul>(attrs, ctx,
{outputs[0], gamma},
{kWriteTo}, {outputs[0]});
// Calculate data = data + beta
BinaryBroadcastCompute<xpu, op::mshadow_op::plus>(attrs, ctx,
{outputs[0], beta},
{kWriteTo}, {outputs[0]});
BinaryBroadcastCompute<xpu, mshadow_op::plus>(attrs, ctx,
{outputs[0], beta},
{kWriteTo}, {outputs[0]});
}

template<typename xpu>
Expand Down Expand Up @@ -233,19 +243,25 @@ void LayerNormGradComputeGeneral(const nnvm::NodeAttrs& attrs,
const TBlob red_out = TBlob(workspace.dptr_ + reduce_workspace_size + data_size * 2,
mean.shape_, mean.dev_mask(), mean.type_flag_, mean.dev_id());
// Compute normalized_data = (data - mean) / std
BinaryBroadcastCompute<xpu, op::mshadow_op::minus>(attrs, ctx,
{data, mean},
{kWriteTo}, {normalized_data});
BinaryBroadcastCompute<xpu, op::mshadow_op::div>(attrs, ctx,
{normalized_data, std},
{kWriteTo}, {normalized_data});
BinaryBroadcastCompute<xpu, mshadow_op::minus>(attrs, ctx,
{data, mean},
{kWriteTo}, {normalized_data});
BinaryBroadcastCompute<xpu, mshadow_op::div>(attrs, ctx,
{normalized_data, std},
{kWriteTo}, {normalized_data});
// Calculate grad_beta
if (req[2] != kNullOp) {
MSHADOW_REAL_TYPE_SWITCH(outputs[2].type_flag_, DType, {
BROADCAST_NDIM_SWITCH(red_exclude_dst_shape.ndim(), NDim, {
broadcast::Reduce<red::sum, NDim, DType, op::mshadow_op::identity>(
s, outputs[2].reshape(red_exclude_dst_shape), req[2], workspace,
ograd.reshape(red_exclude_src_shape));
if (dmlc::GetEnv("MXNET_SAFE_ACCUMULATION", false)) {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::identity, false>(
s, outputs[2].reshape(red_exclude_dst_shape), req[2], workspace,
ograd.reshape(red_exclude_src_shape));
} else {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::identity, true>(
s, outputs[2].reshape(red_exclude_dst_shape), req[2], workspace,
ograd.reshape(red_exclude_src_shape));
}
});
});
}
Expand All @@ -255,9 +271,15 @@ void LayerNormGradComputeGeneral(const nnvm::NodeAttrs& attrs,
if (req[1] != kNullOp) {
MSHADOW_REAL_TYPE_SWITCH(outputs[1].type_flag_, DType, {
BROADCAST_NDIM_SWITCH(red_exclude_dst_shape.ndim(), NDim, {
broadcast::Reduce<red::sum, NDim, DType, op::mshadow_op::identity>(
s, outputs[1].reshape(red_exclude_dst_shape), req[1], workspace,
ograd_mult.reshape(red_exclude_src_shape));
if (dmlc::GetEnv("MXNET_SAFE_ACCUMULATION", false)) {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::identity, false>(
s, outputs[1].reshape(red_exclude_dst_shape), req[1], workspace,
ograd_mult.reshape(red_exclude_src_shape));
} else {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::identity, true>(
s, outputs[1].reshape(red_exclude_dst_shape), req[1], workspace,
ograd_mult.reshape(red_exclude_src_shape));
}
});
});
}
Expand All @@ -274,9 +296,15 @@ void LayerNormGradComputeGeneral(const nnvm::NodeAttrs& attrs,
{kWriteTo}, {ograd_mult});
MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, {
BROADCAST_NDIM_SWITCH(red_dst_shape.ndim(), NDim, {
broadcast::Reduce<red::sum, NDim, DType, op::mshadow_op::identity>(
s, red_out.reshape(red_dst_shape), kWriteTo, workspace,
ograd_mult.reshape(red_src_shape));
if (dmlc::GetEnv("MXNET_SAFE_ACCUMULATION", false)) {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::identity, false>(
s, red_out.reshape(red_dst_shape), kWriteTo, workspace,
ograd_mult.reshape(red_src_shape));
} else {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::identity, true>(
s, red_out.reshape(red_dst_shape), kWriteTo, workspace,
ograd_mult.reshape(red_src_shape));
}
});
Tensor<xpu, 1, DType> red_out_tensor = red_out.FlatTo1D<xpu, DType>(s);
red_out_tensor /= scalar<DType>(channel_size);
Expand All @@ -288,16 +316,22 @@ void LayerNormGradComputeGeneral(const nnvm::NodeAttrs& attrs,
{kWriteTo}, {ograd_mult});
MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, {
BROADCAST_NDIM_SWITCH(red_dst_shape.ndim(), NDim, {
broadcast::Reduce<red::sum, NDim, DType, op::mshadow_op::identity>(
s, red_out.reshape(red_dst_shape), kWriteTo, workspace,
ograd_mult.reshape(red_src_shape));
if (dmlc::GetEnv("MXNET_SAFE_ACCUMULATION", false)) {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::identity, false>(
s, red_out.reshape(red_dst_shape), kWriteTo, workspace,
ograd_mult.reshape(red_src_shape));
} else {
broadcast::Reduce<mshadow_op::sum, NDim, DType, mshadow_op::identity, true>(
s, red_out.reshape(red_dst_shape), kWriteTo, workspace,
ograd_mult.reshape(red_src_shape));
}
});
Tensor<xpu, 1, DType> red_out_tensor = red_out.FlatTo1D<xpu, DType>(s);
red_out_tensor /= scalar<DType>(- channel_size);
});
BinaryBroadcastCompute<xpu, op::mshadow_op::mul>(attrs, ctx,
{normalized_data, red_out},
{kAddTo}, {outputs[0]});
BinaryBroadcastCompute<xpu, mshadow_op::mul>(attrs, ctx,
{normalized_data, red_out},
{kAddTo}, {outputs[0]});
}
}

Expand Down
Loading