Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[MXNET-1401] adding more operators to test support for Large Tensor #14944

Merged
merged 1 commit into from
May 22, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 70 additions & 8 deletions tests/nightly/test_large_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,16 @@ def test_ndarray_ones():
assert nd.sum(a).asnumpy() == LARGE_SIZE


def test_ndarray_convert():
a = nd.zeros(shape=(LARGE_X, SMALL_Y))
b = a.astype(np.int32)
b.wait_to_read()
assert b.dtype == np.int32
b = a.tostype('row_sparse')
b.wait_to_read()
assert isinstance(b, mx.nd.sparse.RowSparseNDArray)


@with_seed()
def test_ndarray_random_uniform():
a = nd.random.uniform(shape=(LARGE_X, SMALL_Y))
Expand Down Expand Up @@ -115,10 +125,9 @@ def test_broadcast():


def test_clip():
a = nd.arange(0, LARGE_X).reshape(LARGE_X, 1)
b = nd.broadcast_to(a, shape=(a.shape[0], SMALL_Y))
res = nd.clip(b, a_min=100, a_max=1000)
assert np.sum(res[-1].asnumpy() == 1000) == b.shape[1]
a = nd.arange(0, LARGE_X * SMALL_Y).reshape(LARGE_X, SMALL_Y)
res = nd.clip(a, a_min=100, a_max=1000)
assert np.sum(res[-1].asnumpy() == 1000) == a.shape[1]


def test_take():
Expand All @@ -128,6 +137,32 @@ def test_take():
assert np.sum(res[-1].asnumpy() == 1) == res.shape[1]


def test_split():
a = nd.arange(0, LARGE_X * SMALL_Y).reshape(LARGE_X, SMALL_Y)
outs = nd.split(a, num_outputs=SMALL_Y, axis=1)
result = sum(1 for i, v in enumerate(outs) if i == v[0].asnumpy())
assert result == a.shape[1]


def test_argmin():
a = nd.arange(0, LARGE_X * SMALL_Y).reshape(LARGE_X, SMALL_Y)
idx = mx.nd.argmin(a, axis=0)
assert idx.shape[0] == SMALL_Y


def test_tile():
a = nd.arange(0, LARGE_X).reshape(LARGE_X, 1)
b = nd.tile(a, reps=(1, SMALL_Y))
assert np.sum(b[-1].asnumpy() == LARGE_X) == b.shape[1]


def test_take():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
idx = nd.arange(LARGE_X - 1000, LARGE_X)
res = nd.take(a, idx)
assert np.sum(res[-1].asnumpy() == 1) == res.shape[1]


def test_slice():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
res = nd.slice(a, begin=(LARGE_X-1000, 1), end=(LARGE_X, SMALL_Y))
Expand Down Expand Up @@ -171,14 +206,12 @@ def test_Dense(ctx=mx.cpu(0)):

def test_where():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
b = nd.arange(0, LARGE_X).reshape(LARGE_X, 1)
b = nd.broadcast_to(b, shape=(b.shape[0], SMALL_Y))
b = nd.arange(0, LARGE_X * SMALL_Y).reshape(LARGE_X, SMALL_Y)
res = nd.where(b > 100, a, b)
assert np.sum(res[-1].asnumpy() == 1) == b.shape[1]

csr_cond = nd.sparse.cast_storage(b < 10, 'csr')
res = nd.sparse.where(csr_cond, a, b)
assert np.sum(res[0].asnumpy() == 1) == b.shape[1]
assert np.sum(res[0].asnumpy() == 1) == 10


def test_pick():
Expand All @@ -187,6 +220,7 @@ def test_pick():
res = mx.nd.pick(a,b)
assert res.shape == b.shape


def test_depthtospace():
def numpy_depth_to_space(x, blocksize):
b, c, h, w = x.shape[0], x.shape[1], x.shape[2], x.shape[3]
Expand All @@ -202,6 +236,7 @@ def numpy_depth_to_space(x, blocksize):
output = mx.nd.depth_to_space(data, 2)
assert_almost_equal(output.asnumpy(), expected, atol=1e-3, rtol=1e-3)


def test_spacetodepth():
def numpy_space_to_depth(x, blocksize):
b, c, h, w = x.shape[0], x.shape[1], x.shape[2], x.shape[3]
Expand All @@ -217,6 +252,33 @@ def numpy_space_to_depth(x, blocksize):
output = mx.nd.space_to_depth(data, 2)
assert_almost_equal(output.asnumpy(), expected, atol=1e-3, rtol=1e-3)


def test_diag():
h = np.random.randint(2,9)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why use randint? Can we just use deterministic values to test diag?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@apeforest : using random values is better since we are checking diagonal. Having different values actually ensures that the operation is performed correctly. Checking just the shape is fine but this ensures total correctness. I think if we can perform this check then it ensures total correctness

w = np.random.randint(2,9)
a_np = np.random.random((LARGE_X, 64)).astype(np.float32)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why do you need to convert to np.float32 explicitly here?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@apeforest by default np.random.random((LARGE_X, 64)) makes it float64 by default.

x = np.random.random((50000000, 64))
x
array([[0.77259927, 0.17861939, 0.73446367, ..., 0.61712618, 0.00411382,
0.80232583],
[0.99131563, 0.29269588, 0.34078989, ..., 0.14693316, 0.68376766,
0.13507782],
[0.26176515, 0.54208053, 0.42594753, ..., 0.76032471, 0.30179728,
0.83745653],
...,
[0.45731445, 0.84679834, 0.02738181, ..., 0.27567623, 0.94721731,
0.77850831],
[0.65551258, 0.92503922, 0.43253718, ..., 0.23874736, 0.55155928,
0.33177961],
[0.95565209, 0.86454407, 0.75257631, ..., 0.31738383, 0.90281116,
0.93569039]])
x.dtype
dtype('float64')

I am trying to keep it consistent with: /~https://github.com/apache/incubator-mxnet/blob/f680255fbff25818ed3eee0d4541d80b3c7b9d9d/tests/python/unittest/test_operator.py#L8029
So, I think float32 is required here.

Copy link
Contributor Author

@access2rohit access2rohit May 21, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ok. mx.nd.array(a_np) is float32 by default.

y = mx.nd.array(x)
y.dtype
<class 'numpy.float32'>

I will remove astype('float32') from next line

a = mx.nd.array(a_np)

# k == 0
r = mx.nd.diag(a)
assert_almost_equal(r.asnumpy(), np.diag(a_np))

# k == 1
k = 1
r = mx.nd.diag(a, k=k)
assert_almost_equal(r.asnumpy(), np.diag(a_np, k=k))

# k == -1
k = -1
r = mx.nd.diag(a, k=k)
assert_almost_equal(r.asnumpy(), np.diag(a_np, k=k))

# random k
k = np.random.randint(-min(LARGE_X, 64) + 1, min(h, w))
r = mx.nd.diag(a, k=k)
assert_almost_equal(r.asnumpy(), np.diag(a_np, k=k))


if __name__ == '__main__':
import nose
nose.runmodule()