Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Implementation for equivalence of tf.moments #14842

Merged
merged 1 commit into from
May 19, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
254 changes: 254 additions & 0 deletions src/operator/nn/moments-inl.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,254 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file moments-inl.h
* \brief Moments operator
* \author Hao Jin
*/

#ifndef MXNET_OPERATOR_NN_MOMENTS_INL_H_
#define MXNET_OPERATOR_NN_MOMENTS_INL_H_

#include <vector>
#include "../tensor/broadcast_reduce_op.h"

namespace mxnet {
namespace op {

struct MomentsParam : public dmlc::Parameter<MomentsParam> {
dmlc::optional<mxnet::TShape> axes;
bool keepdims;
DMLC_DECLARE_PARAMETER(MomentsParam) {
DMLC_DECLARE_FIELD(axes).set_default(dmlc::optional<mxnet::TShape>())
.describe("Array of ints. Axes along which to compute mean and variance.");
DMLC_DECLARE_FIELD(keepdims).set_default(false)
.describe("produce moments with the same dimensionality as the input.");
}
};

inline bool MomentsShape(const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector* in_attrs,
mxnet::ShapeVector* out_attrs) {
const MomentsParam& param = nnvm::get<MomentsParam>(attrs.parsed);
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 2U);

mxnet::TShape out_shape =
ReduceAxesShapeImpl((*in_attrs)[0], param.axes, param.keepdims, false);
if (!param.axes.has_value() || param.axes.value().ndim() == 0) {
LOG(FATAL) << "Empty axes is not supported, if you would like to do global moments, "
<< "please pass all axes to axes argument";
}
SHAPE_ASSIGN_CHECK(*out_attrs, 0, out_shape);
SHAPE_ASSIGN_CHECK(*out_attrs, 1, out_shape);
return true;
}

inline bool MomentsType(const nnvm::NodeAttrs& attrs,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 2U);

TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0));
TYPE_ASSIGN_CHECK(*out_attrs, 1, in_attrs->at(0));
TYPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0));
TYPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(1));
return out_attrs->at(0) != -1 && out_attrs->at(1) != -1;
}

struct VarBroadcastKernel {
template<typename DType>
MSHADOW_XINLINE static void Map(int i,
DType *out,
const DType *data,
const DType *mean,
mshadow::Shape<6> data_shape,
mshadow::Shape<6> mean_shape) {
size_t data_idx = i;
size_t mean_idx = i;
size_t data_stride = 1;
size_t mean_stride = 1;
for (int axis = 5; axis >= 0; --axis) {
size_t axis_idx = data_idx % data_shape[axis];
mean_idx -= axis_idx * data_stride;
if (mean_shape[axis] != 1) {
mean_idx += axis_idx * mean_stride;
}
data_idx /= data_shape[axis];
data_stride *= data_shape[axis];
mean_stride *= mean_shape[axis];
}
DType res = (data[i] - mean[mean_idx]);
out[i] = res * res;
}
};

template<typename xpu>
inline void MomentsForwardImpl(const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs,
const dmlc::optional<mxnet::TShape>& axes,
const bool keepdims) {
using namespace mshadow;
using namespace mshadow_op;
using namespace mxnet_op;

Stream<xpu> *s = ctx.get_stream<xpu>();

const TBlob& data = inputs[0];
const TBlob& mean = outputs[0];
const TBlob& var = outputs[1];

mxnet::TShape small;
if (keepdims) {
small = outputs[0].shape_;
} else {
small = ReduceAxesShapeImpl(inputs[0].shape_, axes, true, false);
}

ReduceAxesComputeImpl<xpu, mshadow_op::sum, true, true>(ctx, {data}, {req[0]}, {mean}, small);
MSHADOW_TYPE_SWITCH(data.type_flag_, DType, {
Shape<6> data_shape, mean_shape;
for (int i = 0; i < 6; ++i) {
data_shape[i] = (i < data.shape_.ndim()) ? data.shape_[i] : 1;
mean_shape[i] = (i < small.ndim()) ? small[i] : 1;
}
Tensor<xpu, 1, DType> temp_data =
ctx.requested[0].get_space_typed<xpu, 1, DType>(Shape1(data.shape_.Size()), s);;
Kernel<VarBroadcastKernel, xpu>::Launch(s, data.shape_.Size(), temp_data.dptr_,
data.dptr<DType>(), mean.dptr<DType>(), data_shape, mean_shape);
ReduceAxesComputeImpl<xpu, mshadow_op::sum, true, true>(
ctx, {TBlob(temp_data).reshape(data.shape_)}, {kWriteTo}, {var}, small);
});
}

template<typename xpu>
inline void MomentsForward(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mshadow;
using namespace mshadow_op;
using namespace mxnet_op;

CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 2U);

const MomentsParam& param = nnvm::get<MomentsParam>(attrs.parsed);

MomentsForwardImpl<xpu>(ctx, inputs, req, outputs, param.axes, param.keepdims);
}

template<int req>
struct VarBackwardKernel {
template<typename DType>
MSHADOW_XINLINE static void Map(int i,
DType *igrad,
const DType *ograd,
const DType *data,
const DType *mean,
mshadow::Shape<6> data_shape,
mshadow::Shape<6> mean_shape,
const float N,
const float ddof = 0.0f) {
size_t data_idx = i;
size_t mean_idx = i;
size_t data_stride = 1;
size_t mean_stride = 1;
for (int axis = 5; axis >= 0; --axis) {
size_t axis_idx = data_idx % data_shape[axis];
mean_idx -= axis_idx * data_stride;
if (mean_shape[axis] != 1) {
mean_idx += axis_idx * mean_stride;
}
data_idx /= data_shape[axis];
data_stride *= data_shape[axis];
mean_stride *= mean_shape[axis];
}
KERNEL_ASSIGN(igrad[i], req, ograd[mean_idx] * (data[i] - mean[mean_idx]) * 2 / (N - ddof));
}
};

template<typename xpu>
inline void MomentsBackwardImpl(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs,
const dmlc::optional<mxnet::TShape>& axes) {
using namespace mshadow;
using namespace mshadow::expr;
using namespace mshadow_op;
using namespace mxnet_op;

Stream<xpu> *s = ctx.get_stream<xpu>();

const TBlob& mean_grad = inputs[0];
const TBlob& var_grad = inputs[1];
const TBlob& data = inputs[2];
const TBlob& mean = inputs[3];
const TBlob& var = inputs[4];
const TBlob& data_grad = outputs[0];

mxnet::TShape small = ReduceAxesShapeImpl(data.shape_, axes, true, false);
BroadcastComputeImpl<xpu>(attrs, ctx, {mean_grad}, req, outputs, small);
MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, {
Tensor<xpu, 1, DType> igrad = outputs[0].FlatTo1D<xpu, DType>(s);
igrad /= scalar<DType>(outputs[0].Size()/inputs[0].Size());
});

Shape<6> data_shape, var_shape;
float N = data_grad.Size() / var.Size();
for (int i = 0; i < 6; ++i) {
data_shape[i] = (i < data.shape_.ndim()) ? data.shape_[i] : 1;
var_shape[i] = (i < small.ndim()) ? small[i] : 1;
}
MSHADOW_TYPE_SWITCH(data_grad.type_flag_, DType, {
Kernel<VarBackwardKernel<kAddTo>, xpu>::Launch(
s, data_grad.shape_.Size(), data_grad.dptr<DType>(), var_grad.dptr<DType>(),
data.dptr<DType>(), mean.dptr<DType>(), data_shape, var_shape, N);
});
}

template<typename xpu>
inline void MomentsBackward(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mshadow;
using namespace mshadow_op;
using namespace mxnet_op;

CHECK_EQ(inputs.size(), 5U);
CHECK_EQ(outputs.size(), 1U);

const MomentsParam& param = nnvm::get<MomentsParam>(attrs.parsed);

MomentsBackwardImpl<xpu>(attrs, ctx, inputs, req, outputs, param.axes);
}

} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_NN_MOMENTS_INL_H_
85 changes: 85 additions & 0 deletions src/operator/nn/moments.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file moments.cc
* \brief Moments operator
* \author Hao Jin
*/

#include "./moments-inl.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(MomentsParam);

NNVM_REGISTER_OP(moments)
.describe(R"code(
Calculate the mean and variance of `data`.

The mean and variance are calculated by aggregating the contents of data across axes.
If x is 1-D and axes = [0] this is just the mean and variance of a vector.

Example:

x = [[1, 2, 3], [4, 5, 6]]
mean, var = moments(data=x, axes=[0])
mean = [2.5, 3.5, 4.5]
var = [2.25, 2.25, 2.25]
mean, var = moments(data=x, axes=[1])
mean = [2.0, 5.0]
var = [0.66666667, 0.66666667]
mean, var = moments(data=x, axis=[0, 1])
mean = [3.5]
var = [2.9166667]

)code" ADD_FILELINE)
.set_attr_parser(ParamParser<MomentsParam>)
.set_num_inputs(1)
.set_num_outputs(2)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<mxnet::FInferShape>("FInferShape", MomentsShape)
.set_attr<nnvm::FInferType>("FInferType", MomentsType)
.set_attr<FCompute>("FCompute<cpu>", MomentsForward<cpu>)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseInOut{"_backward_moments"})
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 0}};
})
.add_argument("data", "NDArray-or-Symbol", "Input ndarray")
.add_arguments(MomentsParam::__FIELDS__());

NNVM_REGISTER_OP(_backward_moments)
.set_attr_parser(ParamParser<MomentsParam>)
.set_num_inputs(5)
.set_num_outputs(1)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", MomentsBackward<cpu>);

} // namespace op
} // namespace mxnet
39 changes: 39 additions & 0 deletions src/operator/nn/moments.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file moments.cu
* \brief Moments operator
* \author Hao Jin
*/

#include "./moments-inl.h"

namespace mxnet {
namespace op {

NNVM_REGISTER_OP(moments)
.set_attr<FCompute>("FCompute<gpu>", MomentsForward<gpu>);

NNVM_REGISTER_OP(_backward_moments)
.set_attr<FCompute>("FCompute<gpu>", MomentsBackward<gpu>);

} // namespace op
} // namespace mxnet
Loading