Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Add the Gluon Implementation of Deformable Convolution #14810

Merged
merged 5 commits into from
May 5, 2019
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions docs/api/python/gluon/contrib.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,17 @@ In the rest of this document, we list routines provided by the `gluon.contrib` p
PixelShuffle3D
```

### Convolutional neural network

```eval_rst
.. currentmodule:: mxnet.gluon.contrib.cnn

.. autosummary::
:nosignatures:

DeformableConvolution
```

### Recurrent neural network

```eval_rst
Expand Down Expand Up @@ -116,6 +127,10 @@ In the rest of this document, we list routines provided by the `gluon.contrib` p
.. automodule:: mxnet.gluon.contrib.nn
:members:
:imported-members:

.. automodule:: mxnet.gluon.contrib.cnn
:members:
:imported-members:

.. automodule:: mxnet.gluon.contrib.rnn
:members:
Expand Down
2 changes: 2 additions & 0 deletions python/mxnet/gluon/contrib/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,4 +22,6 @@

from . import rnn

from . import cnn

from . import data
25 changes: 25 additions & 0 deletions python/mxnet/gluon/contrib/cnn/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable=wildcard-import
"""Contrib convolutional neural network module."""

from . import conv_layers
from .conv_layers import *

__all__ = conv_layers.__all__
224 changes: 224 additions & 0 deletions python/mxnet/gluon/contrib/cnn/conv_layers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,224 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable= arguments-differ
"""Custom convolutional neural network layers in model_zoo."""

__all__ = ['DeformableConvolution']

from .... import symbol
from ...block import HybridBlock
from ....base import numeric_types
from ...nn import Activation

class DeformableConvolution(HybridBlock):
"""2-D Deformable Convolution v_1

Normal Convolution uses sampling points in a regular grid, while the sampling points of Deformable Convolution[1]
can be offset. The offset is learned with a separate convolution layer during the training. Both the convolution
layer for generating the output features and the offsets are included in this gluon layer.

Parameters
----------
channels : int,
The dimensionality of the output space
i.e. the number of output channels in the convolution.
kernel_size : int or tuple/list of 2 ints, (Default value = (1,1))
Specifies the dimensions of the convolution window.
strides : int or tuple/list of 2 ints, (Default value = (1,1))
Specifies the strides of the convolution.
padding : int or tuple/list of 2 ints, (Default value = (0,0))
If padding is non-zero, then the input is implicitly zero-padded
on both sides for padding number of points.
dilation : int or tuple/list of 2 ints, (Default value = (1,1))
Specifies the dilation rate to use for dilated convolution.
groups : int, (Default value = 1)
Controls the connections between inputs and outputs.
At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two convolution
layers side by side, each seeing half the input channels, and producing
half the output channels, and both subsequently concatenated.
num_deformable_group : int, (Default value = 1)
Number of deformable group partitions.
layout : str, (Default value = NCHW)
Dimension ordering of data and weight. Can be 'NCW', 'NWC', 'NCHW',
'NHWC', 'NCDHW', 'NDHWC', etc. 'N', 'C', 'H', 'W', 'D' stands for
batch, channel, height, width and depth dimensions respectively.
Convolution is performed over 'D', 'H', and 'W' dimensions.
use_bias : bool, (Default value = True)
Whether the layer for generating the output features uses a bias vector.
in_channels : int, (Default value = 0)
The number of input channels to this layer. If not specified,
initialization will be deferred to the first time `forward` is called
and input channels will be inferred from the shape of input data.
activation : str, (Default value = None)
Activation function to use. See :func:`~mxnet.ndarray.Activation`.
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
weight_initializer : str or `Initializer`, (Default value = None)
Initializer for the `weight` weights matrix for the convolution layer
for generating the output features.
bias_initializer : str or `Initializer`, (Default value = zeros)
Initializer for the bias vector for the convolution layer
for generating the output features.
offset_weight_initializer : str or `Initializer`, (Default value = zeros)
Initializer for the `weight` weights matrix for the convolution layer
for generating the offset.
offset_bias_initializer : str or `Initializer`, (Default value = zeros),
Initializer for the bias vector for the convolution layer
for generating the offset.
offset_use_bias: bool, (Default value = True)
Whether the layer for generating the offset uses a bias vector.

Inputs:
- **data**: 4D input tensor with shape
`(batch_size, in_channels, height, width)` when `layout` is `NCHW`.
For other layouts shape is permuted accordingly.

Outputs:
- **out**: 4D output tensor with shape
`(batch_size, channels, out_height, out_width)` when `layout` is `NCHW`.
out_height and out_width are calculated as::

out_height = floor((height+2*padding[0]-dilation[0]*(kernel_size[0]-1)-1)/stride[0])+1
out_width = floor((width+2*padding[1]-dilation[1]*(kernel_size[1]-1)-1)/stride[1])+1

Reference:
.. [1] Dai, Jifeng, et al. "Deformable convolutional networks." CoRR, abs/1703.06211 1.2 (2017): 3.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

My guess about the Sphinx error is that it doesn't like this line.
Referring to the docs on citations, you can call it what you like, so maybe pick something more descriptive than "1" and maybe you won't have a collision. It actually says to use a non-numeric label.
Maybe to align with how this is categorized in the rst docs, call this section Citations, and then when anyone looks it up we know how it is supposed to work...

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Now I simplified the citations as it is in Gluon BN layer:
https://mxnet.incubator.apache.org/api/python/gluon/nn.html#mxnet.gluon.nn.BatchNorm

Besides, in the doc of Gluon.Contrib syncbatchnorm:
https://mxnet.incubator.apache.org/api/python/gluon/contrib.html?highlight=syncbatchnorm#id3

it seems to be able to create a hyperlink with an underline, e.g. [1]_

Now the website error is gone, thanks very much for your help.

"""

def __init__(self, channels, kernel_size=(1, 1), strides=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1,
num_deformable_group=1, layout='NCHW', use_bias=True, in_channels=0, activation=None,
weight_initializer=None, bias_initializer='zeros',
offset_weight_initializer='zeros', offset_bias_initializer='zeros', offset_use_bias=True,
op_name='DeformableConvolution', adj=None, prefix=None, params=None):
super(DeformableConvolution, self).__init__(prefix=prefix, params=params)
with self.name_scope():
self._channels = channels
self._in_channels = in_channels

assert layout in ('NCHW', 'NHWC'), "Only supports 'NCHW' and 'NHWC' layout for now"
if isinstance(kernel_size, numeric_types):
kernel_size = (kernel_size,) * 2
if isinstance(strides, numeric_types):
strides = (strides,) * len(kernel_size)
if isinstance(padding, numeric_types):
padding = (padding,) * len(kernel_size)
if isinstance(dilation, numeric_types):
dilation = (dilation,) * len(kernel_size)
self._op_name = op_name

offset_channels = 2 * kernel_size[0] * kernel_size[1] * num_deformable_group
self._kwargs_offset = {
'kernel': kernel_size, 'stride': strides, 'dilate': dilation,
'pad': padding, 'num_filter': offset_channels, 'num_group': groups,
'no_bias': not offset_use_bias, 'layout': layout}

self._kwargs_deformable_conv = {
'kernel': kernel_size, 'stride': strides, 'dilate': dilation,
'pad': padding, 'num_filter': channels, 'num_group': groups,
'num_deformable_group': num_deformable_group,
'no_bias': not use_bias, 'layout': layout}

if adj:
self._kwargs_offset['adj'] = adj
self._kwargs_deformable_conv['adj'] = adj

dshape = [0] * (len(kernel_size) + 2)
dshape[layout.find('N')] = 1
dshape[layout.find('C')] = in_channels

op = getattr(symbol, 'Convolution')
offset = op(symbol.var('data', shape=dshape), **self._kwargs_offset)

offsetshapes = offset.infer_shape_partial()[0]

self.offset_weight = self.params.get('offset_weight', shape=offsetshapes[1],
init=offset_weight_initializer,
allow_deferred_init=True)

if offset_use_bias:
self.offset_bias = self.params.get('offset_bias', shape=offsetshapes[2],
init=offset_bias_initializer,
allow_deferred_init=True)
else:
self.offset_bias = None

deformable_conv_weight_shape = [0] * (len(kernel_size) + 2)
deformable_conv_weight_shape[0] = channels
deformable_conv_weight_shape[2] = kernel_size[0]
deformable_conv_weight_shape[3] = kernel_size[1]

self.deformable_conv_weight = self.params.get('deformable_conv_weight',
shape=deformable_conv_weight_shape,
init=weight_initializer,
allow_deferred_init=True)

if use_bias:
self.deformable_conv_bias = self.params.get('deformable_conv_bias', shape=(channels,),
init=bias_initializer,
allow_deferred_init=True)
else:
self.deformable_conv_bias = None

if activation:
self.act = Activation(activation, prefix=activation + '_')
else:
self.act = None

def hybrid_forward(self, F, x, offset_weight, deformable_conv_weight, offset_bias=None, deformable_conv_bias=None):
if offset_bias is None:
offset = F.Convolution(x, offset_weight, cudnn_off=True, **self._kwargs_offset)
else:
offset = F.Convolution(x, offset_weight, offset_bias, cudnn_off=True, **self._kwargs_offset)

if deformable_conv_bias is None:
act = F.contrib.DeformableConvolution(data=x, offset=offset, weight=deformable_conv_weight,
name='fwd', **self._kwargs_deformable_conv)
else:
act = F.contrib.DeformableConvolution(data=x, offset=offset, weight=deformable_conv_weight,
bias=deformable_conv_bias, name='fwd',
**self._kwargs_deformable_conv)

if self.act:
act = self.act(act)
return act

def _alias(self):
return 'deformable_conv'

def __repr__(self):
s = '{name}({mapping}, kernel_size={kernel}, stride={stride}'
len_kernel_size = len(self._kwargs_deformable_conv['kernel'])
if self._kwargs_deformable_conv['pad'] != (0,) * len_kernel_size:
s += ', padding={pad}'
if self._kwargs_deformable_conv['dilate'] != (1,) * len_kernel_size:
s += ', dilation={dilate}'
if hasattr(self, 'out_pad') and self.out_pad != (0,) * len_kernel_size:
s += ', output_padding={out_pad}'.format(out_pad=self.out_pad)
if self._kwargs_deformable_conv['num_group'] != 1:
s += ', groups={num_group}'
if self.deformable_conv_bias is None:
s += ', bias=False'
if self.act:
s += ', {}'.format(self.act)
s += ')'
shape = self.deformable_conv_weight.shape
return s.format(name=self.__class__.__name__,
mapping='{0} -> {1}'.format(shape[1] if shape[1] else None, shape[0]),
**self._kwargs_deformable_conv)
63 changes: 63 additions & 0 deletions tests/python/gpu/test_gluon_contrib_gpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Tests of the contrib APIs in Gluon only with gpu"""

from __future__ import print_function
import mxnet as mx
from mxnet.gluon import nn
from mxnet.gluon import contrib
from mxnet.gluon.contrib.cnn import DeformableConvolution


def test_DeformableConvolution():
"""test of the deformable convolution layer with possible combinations of arguments,
currently this layer only supports gpu
"""
net = nn.HybridSequential()
net.add(
DeformableConvolution(10, kernel_size=(3, 3), strides=1, padding=0),
DeformableConvolution(10, kernel_size=(3, 2), strides=1, padding=0, activation='relu',
offset_use_bias=False, use_bias=False),
DeformableConvolution(10, kernel_size=(3, 2), strides=1, padding=0, activation='relu',
offset_use_bias=False),
DeformableConvolution(10, kernel_size=(3, 2), strides=1, padding=0, activation='relu',
use_bias=False),
DeformableConvolution(10, kernel_size=(3, 2), strides=1, padding=0, offset_use_bias=False, use_bias=False),
DeformableConvolution(10, kernel_size=(3, 2), strides=1, padding=0, offset_use_bias=False),
DeformableConvolution(12, kernel_size=(3, 2), strides=1, padding=0, use_bias=False),
DeformableConvolution(12, kernel_size=(3, 2), strides=1, padding=0, use_bias=False, num_deformable_group=4),
)

try:
ctx = mx.gpu()
_ = mx.nd.array([0], ctx=ctx)
except mx.base.MXNetError:
print("deformable_convolution only supports GPU")
return

net.initialize(force_reinit=True, ctx=ctx)
net.hybridize()

x = mx.nd.random.uniform(shape=(8, 5, 30, 31), ctx=ctx)
with mx.autograd.record():
y = net(x)
y.backward()


if __name__ == '__main__':
import nose
nose.runmodule()