-
Notifications
You must be signed in to change notification settings - Fork 6.8k
[MKLDNN] add quantized sum #14614
[MKLDNN] add quantized sum #14614
Changes from 12 commits
d928ef4
45d831f
fe60be3
b90de11
b2c6b07
18c7283
659a002
1f20274
e8e580b
c96103f
4a4556b
f156005
55b0103
f51d055
3a794c4
5679389
11a6206
4ddf2c7
4e5b586
a444555
89c30a3
9cb8bbe
e55b27b
fa3d1e4
11cd34a
c18eeec
c3ef05d
45d914a
34bec4d
3d5c2e7
440a7a5
3e6762e
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
/*! | ||
* \file mkldnn_quantized_elemwise_add-inl.h | ||
* \brief | ||
* \author Rong Zhang | ||
*/ | ||
|
||
#ifndef MXNET_OPERATOR_QUANTIZATION_MKLDNN_MKLDNN_QUANTIZED_ELEMWISE_ADD_INL_H_ | ||
#define MXNET_OPERATOR_QUANTIZATION_MKLDNN_MKLDNN_QUANTIZED_ELEMWISE_ADD_INL_H_ | ||
#if MXNET_USE_MKLDNN == 1 | ||
|
||
#include "../../tensor/elemwise_unary_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
struct RequantizeElemwiseAddParam : public dmlc::Parameter<RequantizeElemwiseAddParam> { | ||
dmlc::optional<float> min_calib_range; | ||
dmlc::optional<float> max_calib_range; | ||
DMLC_DECLARE_PARAMETER(RequantizeElemwiseAddParam) { | ||
DMLC_DECLARE_FIELD(min_calib_range) | ||
.set_default(dmlc::optional<float>()) | ||
.describe("The minimum scalar value in the form of float32 obtained " | ||
"through calibration. If present, it will be used to requantize the " | ||
"int8 output data."); | ||
DMLC_DECLARE_FIELD(max_calib_range) | ||
.set_default(dmlc::optional<float>()) | ||
.describe("The maximum scalar value in the form of float32 obtained " | ||
"through calibration. If present, it will be used to requantize the " | ||
"int8 output data."); | ||
} | ||
}; | ||
|
||
namespace quantized_elemwise_add_enum { | ||
enum QuantizedElemwiseAddOutputs { kOut, kMin, kMax }; | ||
enum QuantizedElemwiseAddInputs { kDataA, kDataB, kAMin, kAMax, kBMin, kBMax}; | ||
} | ||
|
||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_USE_MKLDNN == 1 | ||
#endif // MXNET_OPERATOR_QUANTIZATION_MKLDNN_MKLDNN_QUANTIZED_ELEMWISE_ADD_INL_H_ |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2019 by Contributors | ||
* \file mkldnn_quantized_elemwise_add.cc | ||
* \brief | ||
*/ | ||
|
||
#if MXNET_USE_MKLDNN == 1 | ||
#include "./mkldnn_quantized_elemwise_add-inl.h" | ||
#include "../../nn/mkldnn/mkldnn_ops-inl.h" | ||
#include "../../nn/mkldnn/mkldnn_base-inl.h" | ||
#include "../quantization_utils.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
DMLC_REGISTER_PARAMETER(RequantizeElemwiseAddParam); | ||
|
||
static inline float GetScale(const NDArray& data, float min, float max) { | ||
auto data_range = (data.dtype() == mshadow::kInt8) ? kInt8Range : kUint8Range; | ||
return data_range / MaxAbs(min, max); | ||
} | ||
|
||
static void MKLDNNQuantizedElemwiseAddForward(const nnvm::NodeAttrs& attrs, const OpContext& ctx, | ||
const std::vector<NDArray>& in_data, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<NDArray>& out_data) { | ||
const RequantizeElemwiseAddParam& params = nnvm::get<RequantizeElemwiseAddParam>(attrs.parsed); | ||
// A, B, A_min, A_max, B_min, B_max | ||
CHECK_EQ(in_data.size(), 6U); | ||
// C, C_min, C_max | ||
CHECK_EQ(out_data.size(), 3U); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please add some descriptive message for these two checks. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I meant the error message if the check is failed~ |
||
// Collect data min,max,absmax | ||
const float dataA_min = in_data[quantized_elemwise_add_enum::kAMin].data().dptr<float>()[0]; | ||
const float dataB_min = in_data[quantized_elemwise_add_enum::kBMin].data().dptr<float>()[0]; | ||
const float dataA_max = in_data[quantized_elemwise_add_enum::kAMax].data().dptr<float>()[0]; | ||
const float dataB_max = in_data[quantized_elemwise_add_enum::kBMax].data().dptr<float>()[0]; | ||
const float dataA_absmax = MaxAbs(dataA_min, dataA_max); | ||
const float dataB_absmax = MaxAbs(dataB_min, dataB_max); | ||
|
||
auto dataA_mem = in_data[quantized_elemwise_add_enum::kDataA].GetMKLDNNData(); | ||
auto dataB_mem = in_data[quantized_elemwise_add_enum::kDataB].GetMKLDNNData(); | ||
const bool is_dataA_int8 = (in_data[quantized_elemwise_add_enum::kDataA].dtype() | ||
== mshadow::kInt8); | ||
const size_t dataA_range = is_dataA_int8 ? kInt8Range : kUint8Range; | ||
|
||
const float A_scale = GetScale(in_data[quantized_elemwise_add_enum::kDataA], | ||
dataA_min, | ||
dataA_max); | ||
const float B_scale = GetScale(in_data[quantized_elemwise_add_enum::kDataB], | ||
dataB_min, | ||
dataB_max); | ||
// rescaled_mem is for reorder mkldnn memory | ||
mkldnn::memory *rescaled_mem; | ||
|
||
// output default set as int32 | ||
size_t output_data_range = kInt32Range; | ||
auto output_data_type = mkldnn::memory::s32; | ||
// dataA && dataB are uint8 | ||
if (out_data[quantized_elemwise_add_enum::kOut].dtype() == mshadow::kInt8) { | ||
output_data_range = kInt8Range; | ||
output_data_type = mkldnn::memory::s8; | ||
} else if (out_data[quantized_elemwise_add_enum::kOut].dtype() == mshadow::kUint8) { | ||
output_data_range = kUint8Range; | ||
output_data_type = mkldnn::memory::u8; | ||
} else { | ||
output_data_range = kInt32Range; | ||
output_data_type = mkldnn::memory::s32; | ||
} | ||
|
||
float output_min = 0; | ||
float output_max = 0; | ||
float out_data_scale = 0; | ||
if (params.max_calib_range.has_value() && params.min_calib_range.has_value()) { | ||
output_min = params.min_calib_range.value(); | ||
output_max = params.max_calib_range.value(); | ||
out_data_scale = output_data_range/MaxAbs(output_min, output_max); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Add spaces before and after |
||
} else { | ||
output_max = dataA_absmax + dataB_absmax; | ||
output_min = -output_max; | ||
} | ||
// 2: scale 0 for dataA, scale 1 for data B | ||
const int scales_num = 2; | ||
std::vector<float> scales(scales_num, 1); | ||
if (in_data[quantized_elemwise_add_enum::kDataA].dtype() | ||
!= in_data[quantized_elemwise_add_enum::kDataB].dtype()) { | ||
auto s8_pd = (is_dataA_int8 == true) | ||
? dataA_mem->get_primitive_desc() | ||
: dataB_mem->get_primitive_desc(); | ||
rescaled_mem = TmpMemMgr::Get()->Alloc(s8_pd); | ||
float u8_reorder_scale = 0; | ||
if (params.max_calib_range.has_value() && params.min_calib_range.has_value()) { | ||
if (is_dataA_int8 == true) { | ||
u8_reorder_scale = out_data_scale/B_scale; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. ditto |
||
scales[0] = out_data_scale/A_scale; | ||
} else { | ||
u8_reorder_scale = out_data_scale/A_scale; | ||
scales[1] = out_data_scale/B_scale; | ||
} | ||
} else { | ||
// x*dataA_absmax/dataA_range = y*(dataA_absmax+dataB_absmax)/output_range | ||
if (is_dataA_int8 == true) { | ||
u8_reorder_scale = dataB_absmax*output_data_range | ||
/((dataA_absmax + dataB_absmax)*kUint8Range); | ||
scales[0] = dataA_absmax*output_data_range | ||
/((dataA_absmax + dataB_absmax)*dataA_range); | ||
} else { | ||
u8_reorder_scale = dataA_absmax*output_data_range | ||
/((dataA_absmax + dataB_absmax)*dataA_range); | ||
scales[1] = dataB_absmax*output_data_range | ||
/((dataA_absmax + dataB_absmax)*kInt8Range); | ||
} | ||
} | ||
std::vector<float> reorder_scale = {u8_reorder_scale}; | ||
primitive_attr reorder_attr; | ||
reorder_attr.set_int_output_round_mode(round_mode::round_nearest); | ||
reorder_attr.set_output_scales(0, reorder_scale); | ||
auto u8_mem = (is_dataA_int8 == true) ? dataB_mem : dataA_mem; | ||
const auto reorder_pd = mkldnn::reorder::primitive_desc(u8_mem->get_primitive_desc(), | ||
s8_pd, | ||
reorder_attr); | ||
MKLDNNStream::Get()->RegisterPrim(mkldnn::reorder(reorder_pd, *u8_mem, *rescaled_mem)); | ||
|
||
if (is_dataA_int8 == true) { | ||
dataB_mem = rescaled_mem; | ||
} else { | ||
dataA_mem = rescaled_mem; | ||
} | ||
} else { | ||
// same data type and has same data range | ||
if (params.max_calib_range.has_value() && params.min_calib_range.has_value()) { | ||
scales[0] = out_data_scale/A_scale; | ||
scales[1] = out_data_scale/B_scale; | ||
} else { | ||
scales[0] = dataA_absmax*output_data_range/((dataA_absmax + dataB_absmax)*dataA_range); | ||
scales[1] = dataB_absmax*output_data_range/((dataA_absmax + dataB_absmax)*dataA_range); | ||
} | ||
} | ||
|
||
std::vector<mkldnn::primitive::at> in_prims; | ||
std::vector<mkldnn::memory::primitive_desc> in_pds; | ||
in_prims.push_back(*dataA_mem); | ||
in_prims.push_back(*dataB_mem); | ||
in_pds.push_back(dataA_mem->get_primitive_desc()); | ||
in_pds.push_back(dataB_mem->get_primitive_desc()); | ||
size_t i_ndim = in_data[quantized_elemwise_add_enum::kDataA].shape().ndim(); | ||
mkldnn::memory::dims i_dims = mkldnn::memory::dims(i_ndim); | ||
for (size_t i = 0; i < i_ndim; i++) { | ||
i_dims[i] = static_cast<int>(in_data[quantized_elemwise_add_enum::kDataA].shape()[i]); | ||
} | ||
mkldnn::memory::format i_fmt = static_cast<mkldnn::memory::format>( | ||
in_pds[quantized_elemwise_add_enum::kDataA].desc().data.format); | ||
auto output_desc = mkldnn::memory::desc(i_dims, output_data_type, i_fmt); | ||
mkldnn::sum::primitive_desc pdesc(output_desc, scales, in_pds); | ||
auto mem = CreateMKLDNNMem(out_data[quantized_elemwise_add_enum::kOut], | ||
pdesc.dst_primitive_desc(), | ||
req[0], | ||
&in_data[0]); | ||
MKLDNNStream *stream = MKLDNNStream::Get(); | ||
stream->RegisterPrim(mkldnn::sum(pdesc, in_prims, *mem.second)); | ||
CommitOutput(out_data[quantized_elemwise_add_enum::kOut], mem); | ||
stream->Submit(); | ||
|
||
out_data[quantized_elemwise_add_enum::kMin].data().dptr<float>()[0] = output_min; | ||
out_data[quantized_elemwise_add_enum::kMax].data().dptr<float>()[0] = output_max; | ||
} | ||
|
||
inline static bool ElemwiseAddStorageType(const nnvm::NodeAttrs& attrs, const int dev_mask, | ||
DispatchMode* dispatch_mode, std::vector<int>* in_attrs, | ||
std::vector<int>* out_attrs) { | ||
// A, B, A_min, A_max, B_min, B_max | ||
CHECK_EQ(in_attrs->size(), 6U); | ||
// C, C_min, C_max | ||
CHECK_EQ(out_attrs->size(), 3U); | ||
|
||
return MKLDNNStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs, out_attrs); | ||
} | ||
|
||
NNVM_REGISTER_OP(_contrib_quantized_elemwise_add) | ||
.set_attr<FInferStorageType>("FInferStorageType", ElemwiseAddStorageType) | ||
.set_attr<FComputeEx>("FComputeEx<cpu>", MKLDNNQuantizedElemwiseAddForward) | ||
.set_attr<bool>("TIsMKLDNN", true) | ||
.set_attr_parser(ParamParser<RequantizeElemwiseAddParam>) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It's There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes. this is for fusion with requantized |
||
.add_arguments(RequantizeElemwiseAddParam::__FIELDS__()); | ||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_USE_MKLDNN == 1 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
please fix indent.