Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Performance improving for MKL-DNN Quantized FullyConnected #14528

Merged
merged 3 commits into from
Mar 27, 2019
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions src/operator/nn/fully_connected-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,12 @@ enum FullyConnectedOpResource {kTempSpace};
enum FullyConnectedOpOutputs {kOut};
} // fullc

namespace quantized_fullc {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

quantized_fc?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

just to align with fullc :)

enum QuantizedFCInputMinMax {kDataMin, kDataMax, kWeightMin, kWeightMax, kBiasMin, kBiasMax};
enum QuantizedFCOutputs {kOut, kOutMin, kOutMax};
} // quantized_fullc


struct FullyConnectedParam : public dmlc::Parameter<FullyConnectedParam> {
int num_hidden;
bool no_bias;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,11 +31,6 @@
namespace mxnet {
namespace op {

namespace quantized_fc_enum {
enum QuantizedFCInputMinMax { kDataMin, kDataMax, kWeightMin, kWeightMax, kBiasMin, kBiasMax };
enum QuantizedFCOutputs { kOut, kOutMin, kOutMax };
}

void MKLDNNQuantizedFullyConnectedForward(const nnvm::NodeAttrs &attrs,
const OpContext &ctx,
const std::vector<NDArray> &in_data,
Expand All @@ -52,15 +47,15 @@ void MKLDNNQuantizedFullyConnectedForward(const nnvm::NodeAttrs &attrs,
NDArray weight = in_data[fullc::kWeight];

const float min_data =
in_data[num_inputs + quantized_fc_enum::kDataMin].data().dptr<float>()[0];
in_data[num_inputs + quantized_fullc::kDataMin].data().dptr<float>()[0];
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Quite strange usage. Why not define a whole input sets with original inputs?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Original inputs might not include bias, which results in different index for all these min/max. Just to simplify the ordering for quantized op only.

const float max_data =
in_data[num_inputs + quantized_fc_enum::kDataMax].data().dptr<float>()[0];
in_data[num_inputs + quantized_fullc::kDataMax].data().dptr<float>()[0];
const float min_weight =
in_data[num_inputs + quantized_fc_enum::kWeightMin].data().dptr<float>()[0];
in_data[num_inputs + quantized_fullc::kWeightMin].data().dptr<float>()[0];
const float max_weight =
in_data[num_inputs + quantized_fc_enum::kWeightMax].data().dptr<float>()[0];
float *min_output_ptr = out_data[quantized_fc_enum::kOutMin].data().dptr<float>();
float *max_output_ptr = out_data[quantized_fc_enum::kOutMax].data().dptr<float>();
in_data[num_inputs + quantized_fullc::kWeightMax].data().dptr<float>()[0];
float *min_output_ptr = out_data[quantized_fullc::kOutMin].data().dptr<float>();
float *max_output_ptr = out_data[quantized_fullc::kOutMax].data().dptr<float>();

auto data_range = (data.dtype() == mshadow::kInt8) ? kInt8Range : kUint8Range;
float data_scale = data_range / MaxAbs(min_data, max_data);
Expand All @@ -69,8 +64,8 @@ void MKLDNNQuantizedFullyConnectedForward(const nnvm::NodeAttrs &attrs,
NDArray quantized_bias;
if (!param.no_bias) {
NDArray bias = in_data[fullc::kBias];
float min_bias = in_data[num_inputs + quantized_fc_enum::kBiasMin].data().dptr<float>()[0];
float max_bias = in_data[num_inputs + quantized_fc_enum::kBiasMax].data().dptr<float>()[0];
float min_bias = in_data[num_inputs + quantized_fullc::kBiasMin].data().dptr<float>()[0];
float max_bias = in_data[num_inputs + quantized_fullc::kBiasMax].data().dptr<float>()[0];
float bias_int32_rescale = data_scale * weight_scale * MaxAbs(min_bias, max_bias) / kInt8Range;

quantized_bias = NDArray(bias.storage_type(), bias.shape(),
Expand Down
22 changes: 14 additions & 8 deletions src/operator/quantization/quantized_fully_connected.cc
Original file line number Diff line number Diff line change
Expand Up @@ -222,20 +222,26 @@ void QuantizedFullyConnectedForwardCPU(const nnvm::NodeAttrs& attrs,
shiftdata.dptr_[i] = data_temp[i] + shift;
}

Tensor<cpu, 1, float> min_output = out_data[1].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> max_output = out_data[2].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> min_data = in_data[num_inputs].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> max_data = in_data[num_inputs + 1].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> min_weight = in_data[num_inputs + 2].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> max_weight = in_data[num_inputs + 3].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> min_output = out_data[quantized_fullc::kOutMin].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> max_output = out_data[quantized_fullc::kOutMax].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> min_data =
in_data[num_inputs + quantized_fullc::kDataMin].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> max_data =
in_data[num_inputs + quantized_fullc::kDataMax].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> min_weight =
in_data[num_inputs + quantized_fullc::kWeightMin].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> max_weight =
in_data[num_inputs + quantized_fullc::kWeightMax].get<cpu, 1, float>(s);

Kernel<QuantizationRangeForMultiplicationStruct, cpu>::Launch(s, 1, min_output.dptr_,
max_output.dptr_, min_data.dptr_, max_data.dptr_, min_weight.dptr_, max_weight.dptr_);
if (!param.no_bias) {
Tensor<cpu, 1, int8_t> bias = in_data[fullc::kBias].get_with_shape<cpu, 1, int8_t>(
Shape1(wshape[0]), s);
Tensor<cpu, 1, float> min_bias = in_data[num_inputs + 4].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> max_bias = in_data[num_inputs + 5].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> min_bias =
in_data[num_inputs + quantized_fullc::kBiasMin].get<cpu, 1, float>(s);
Tensor<cpu, 1, float> max_bias =
in_data[num_inputs + quantized_fullc::kBiasMax].get<cpu, 1, float>(s);

Kernel<QuantizedSumInitKernelWithBias, cpu>::Launch(s, n, out.dptr_,
bias.dptr_, min_output.dptr_, max_output.dptr_, min_bias.dptr_, max_bias.dptr_);
Expand Down
41 changes: 24 additions & 17 deletions src/operator/subgraph/mkldnn/mkldnn_fc.cc
Original file line number Diff line number Diff line change
Expand Up @@ -63,14 +63,15 @@ class SgMKLDNNFCOp {
nnvm::Symbol subgraph_sym_;
MKLDNNFCFullParam full_param_;
std::shared_ptr<MKLDNNFullyConnectedForward> fwd_;
NDArray cached_weight_;
NDArray cached_bias_;
float cached_min_data_;
float cached_max_data_;
float cached_min_weight_;
float cached_max_weight_;
float cached_min_bias_;
float cached_max_bias_;
float cached_min_output_;
float cached_max_output_;
};

void SgMKLDNNFCOp::Forward(const OpContext &ctx,
Expand All @@ -91,23 +92,19 @@ void SgMKLDNNFCOp::Forward(const OpContext &ctx,
float max_weight = 0.0;
float min_bias = 0.0;
float max_bias = 0.0;
float *min_output_ptr = nullptr;
float *max_output_ptr = nullptr;

if (mkldnn_param.quantized) {
total_num_inputs = base_num_inputs * 3;
min_data = in_data[base_num_inputs].data().dptr<float>()[0];
max_data = in_data[base_num_inputs + 1].data().dptr<float>()[0];
min_weight = in_data[base_num_inputs + 2].data().dptr<float>()[0];
max_weight = in_data[base_num_inputs + 3].data().dptr<float>()[0];
min_data = in_data[base_num_inputs + quantized_fullc::kDataMin].data().dptr<float>()[0];
max_data = in_data[base_num_inputs + quantized_fullc::kDataMax].data().dptr<float>()[0];
min_weight = in_data[base_num_inputs + quantized_fullc::kWeightMin].data().dptr<float>()[0];
max_weight = in_data[base_num_inputs + quantized_fullc::kWeightMax].data().dptr<float>()[0];
if (has_bias) {
min_bias = in_data[base_num_inputs + 4].data().dptr<float>()[0];
max_bias = in_data[base_num_inputs + 5].data().dptr<float>()[0];
min_bias = in_data[base_num_inputs + quantized_fullc::kBiasMin].data().dptr<float>()[0];
max_bias = in_data[base_num_inputs + quantized_fullc::kBiasMax].data().dptr<float>()[0];
}
if (!mkldnn_param.enable_float_output) {
total_num_outputs = base_num_outputs * 3;
min_output_ptr = out_data[1].data().dptr<float>();
max_output_ptr = out_data[2].data().dptr<float>();
}
}
CHECK_EQ(in_data.size(), total_num_inputs);
Expand Down Expand Up @@ -135,6 +132,8 @@ void SgMKLDNNFCOp::Forward(const OpContext &ctx,
cached_max_weight_ = max_weight;
if (has_bias) {
cached_bias_ = in_data[fullc::kBias];
cached_min_bias_ = min_bias;
cached_max_bias_ = max_bias;
} else {
cached_bias_ = NDArray();
}
Expand All @@ -149,7 +148,7 @@ void SgMKLDNNFCOp::Forward(const OpContext &ctx,
if (has_bias) {
NDArray bias = in_data[fullc::kBias];
float bias_int32_rescale = data_scale * weight_scale *
MaxAbs(min_bias, max_bias) / kInt8Range;
MaxAbs(cached_min_bias_, cached_max_bias_) / kInt8Range;

cached_bias_ = NDArray(bias.storage_type(), bias.shape(),
bias.ctx(), true, mshadow::kInt32);
Expand All @@ -168,15 +167,16 @@ void SgMKLDNNFCOp::Forward(const OpContext &ctx,
} else if (mkldnn_param.min_calib_range.has_value() &&
mkldnn_param.max_calib_range.has_value()) {
full_param_.output_scales.resize(0);
*min_output_ptr = mkldnn_param.min_calib_range.value();
*max_output_ptr = mkldnn_param.max_calib_range.value();
cached_min_output_ = mkldnn_param.min_calib_range.value();
cached_max_output_ = mkldnn_param.max_calib_range.value();

full_param_.requantize_scales[0] = quantized_out_range /
MaxAbs(*min_output_ptr, *max_output_ptr) / data_scale / weight_scale;
MaxAbs(cached_min_output_, cached_max_output_) / data_scale / weight_scale;
} else {
Stream<cpu> *s = ctx.get_stream<cpu>();
mxnet_op::Kernel<QuantizationRangeForMultiplicationStruct, cpu>::Launch(s, 1,
min_output_ptr, max_output_ptr, &min_data, &max_data, &min_weight, &max_weight);
mxnet_op::Kernel<QuantizationRangeForMultiplicationStruct, cpu>::Launch(
s, 1, &cached_min_output_, &cached_max_output_,
&min_data, &max_data, &min_weight, &max_weight);
}
}

Expand All @@ -195,6 +195,13 @@ void SgMKLDNNFCOp::Forward(const OpContext &ctx,
}

MKLDNNFCForwardFullFeature(full_param_, ctx, fwd_.get(), new_inputs, new_req, out_data);

if (mkldnn_param.quantized && !mkldnn_param.enable_float_output) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add comments on why

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think it's straightforward here, the OutMin and OutMax are only valid when the op is quantized and not generating fp32 output.

float *min_output_ptr = out_data[quantized_fullc::kOutMin].data().dptr<float>();
float *max_output_ptr = out_data[quantized_fullc::kOutMax].data().dptr<float>();
*min_output_ptr = cached_min_output_;
*max_output_ptr = cached_max_output_;
}
}

static void SgMKLDNNFCParamParser(nnvm::NodeAttrs *attrs) {
Expand Down