Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Relaxing type requirements for reshape_like op #14325

Merged
merged 4 commits into from
Mar 5, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 10 additions & 1 deletion src/operator/tensor/elemwise_unary_op_basic.cc
Original file line number Diff line number Diff line change
Expand Up @@ -481,7 +481,16 @@ Negative indices are supported, and `None` can be used for either `lhs_end` or `
[](const NodeAttrs& attrs) { return std::vector<uint32_t>(1, 1); })
.set_attr<FCompute>("FCompute<cpu>", UnaryOp::IdentityCompute<cpu>)
.set_attr<mxnet::FInferShape>("FInferShape", ReshapeLikeShapeCompute)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<2, 1>)
.set_attr<nnvm::FInferType>("FInferType", [](const nnvm::NodeAttrs& attrs,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 2) << " in operator " << attrs.name;
std::vector<int> checked_in_attrs = { (*in_attrs)[0] };
bool ret = !type_is_none((*in_attrs)[1]) &&
ElemwiseType<1, 1>(attrs, &checked_in_attrs, out_attrs);
(*in_attrs)[0] = checked_in_attrs[0];
return ret;
})
.set_attr<nnvm::FGradient>(
"FGradient", [](const nnvm::NodePtr& n,
const std::vector<nnvm::NodeEntry>& ograds) {
Expand Down
10 changes: 10 additions & 0 deletions tests/python/unittest/test_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -2529,6 +2529,16 @@ def test_slice_like_different_types():
z = mx.nd.slice_like(x, y)
assert_allclose(z.asnumpy(), [[1,2,3],[5,6,7]])

@with_seed()
def test_reshape_like_different_types():
x = mx.nd.zeros((2, 3))

y = mx.nd.array([[1, 2], [3, 4], [5, 6]])

y = mx.nd.array(y).astype('int32')
z = mx.nd.reshape_like(x, y)
assert_allclose(z.asnumpy(), [[0,0],[0,0],[0,0]])

@with_seed()
def test_flip():
for ndim in range(1, 6):
Expand Down