Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[MXNET-1299] Perl: sync with Python API #14194

Merged
merged 1 commit into from
Feb 21, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions perl-package/AI-MXNet/Changes
Original file line number Diff line number Diff line change
@@ -1,5 +1,11 @@
Revision history for Perl extension AI::MXNet

1.4 Mon Feb 18 11:54:07 PST 2019
- Two more gluon loss classes
- Visualization fixes
- Gluon rnn rework, including hybridization
- Exposed GPU memory info to perl level.

1.33 Thu Oct 4 13:25:56 PDT 2018
- Added randn function.
- Internal SELU function on C++ layer.
Expand Down
4 changes: 2 additions & 2 deletions perl-package/AI-MXNet/META.json
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
},
"runtime" : {
"requires" : {
"AI::MXNetCAPI" : "1.33",
"AI::MXNetCAPI" : "1.4",
"AI::NNVMCAPI" : "1.3",
"Function::Parameters" : "1.0705",
"Hash::Ordered" : "0.012",
Expand All @@ -45,5 +45,5 @@
}
},
"release_status" : "stable",
"version" : "1.33"
"version" : "1.4"
}
4 changes: 2 additions & 2 deletions perl-package/AI-MXNet/META.yml
Original file line number Diff line number Diff line change
Expand Up @@ -34,12 +34,12 @@ no_index:
- t
- inc
requires:
AI::MXNetCAPI: '1.33'
AI::MXNetCAPI: '1.4'
AI::NNVMCAPI: '1.3'
Function::Parameters: '1.0705'
Hash::Ordered: '0.012'
GraphViz: '2.14'
Mouse: v2.1.0
PDL: '2.007'
PDL::CCS: '1.23.4'
version: '1.33'
version: '1.4'
4 changes: 2 additions & 2 deletions perl-package/AI-MXNet/Makefile.PL
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ my %WriteMakefileArgs = (
"LICENSE" => "apache_2_0",
"NAME" => "AI::MXNet",
"PREREQ_PM" => {
"AI::MXNetCAPI" => "1.33",
"AI::MXNetCAPI" => "1.4",
"AI::NNVMCAPI" => "1.3",
"Function::Parameters" => "1.0705",
"Hash::Ordered" => "0.012",
Expand All @@ -46,7 +46,7 @@ my %WriteMakefileArgs = (
"GraphViz" => "2.14"
},
"TEST_REQUIRES" => {},
"VERSION" => "1.33",
"VERSION" => "1.4",
"test" => {
"TESTS" => "t/*.t"
}
Expand Down
2 changes: 1 addition & 1 deletion perl-package/AI-MXNet/README
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
This archive contains the distribution AI-MXNet,
version 1.33:
version 1.4:

Perl interface to MXNet machine learning library

Expand Down
2 changes: 1 addition & 1 deletion perl-package/AI-MXNet/lib/AI/MXNet.pm
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ use AI::MXNet::Gluon;
use AI::MXNet::NDArray::Sparse;
use AI::MXNet::Symbol::Sparse;
use AI::MXNet::Engine;
our $VERSION = '1.33';
our $VERSION = '1.4';

sub import
{
Expand Down
24 changes: 24 additions & 0 deletions perl-package/AI-MXNet/lib/AI/MXNet/Context.pm
Original file line number Diff line number Diff line change
Expand Up @@ -190,6 +190,30 @@ method num_gpus()
return scalar(check_call(AI::MXNetCAPI::GetGPUCount()));
}

=head2 gpu_memory_info
Query CUDA for the free and total bytes of GPU global memory.
Parameters
----------
$device_id=0 : int, optional
The device id of the GPU device.
Raises
------
Will raise an exception on any CUDA error.
Returns
-------
($free, $total) : (int, int)
Free and total memory in bytes.
=cut

method gpu_memory_info($device_id=0)
{
return check_call(AI::MXNetCAPI::GetGPUMemoryInformation64($device_id));
}

method current_ctx()
{
return $AI::MXNet::current_ctx;
Expand Down
171 changes: 171 additions & 0 deletions perl-package/AI-MXNet/lib/AI/MXNet/Gluon/Loss.pm
Original file line number Diff line number Diff line change
Expand Up @@ -824,4 +824,175 @@ method hybrid_forward(

__PACKAGE__->register('AI::MXNet::Gluon::Loss');

package AI::MXNet::Gluon::PoissonNLLLoss;
use AI::MXNet::Gluon::Mouse;
extends 'AI::MXNet::Gluon::Loss';
has 'from_logits' => (is => 'ro', isa => 'Bool', default => 1);
has 'compute_full' => (is => 'ro', isa => 'Bool', default => 0);

=head1 NAME
AI::MXNet::Gluon::PoissonNLLLoss
=cut

=head1 DESCRIPTION
For a target (Random Variable) in a Poisson distribution, the function calculates the Negative
Log likelihood loss.
PoissonNLLLoss measures the loss accrued from a poisson regression prediction made by the model.
.. math::
L = \text{pred} - \text{target} * \log(\text{pred}) +\log(\text{target!})
`pred`, `target` can have arbitrary shape as long as they have the same number of elements.
Parameters
----------
from_logits : boolean, default True
indicating whether log(predicted) value has already been computed. If True, the loss is computed as
:math:`\exp(\text{pred}) - \text{target} * \text{pred}`, and if False, then loss is computed as
:math:`\text{pred} - \text{target} * \log(\text{pred}+\text{epsilon})`.The default value
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
compute_full: boolean, default False
Indicates whether to add an approximation(Stirling factor) for the Factorial term in the formula for the loss.
The Stirling factor is:
:math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})`
epsilon: float, default 1e-08
This is to avoid calculating log(0) which is not defined.
Inputs:
- **pred**: Predicted value
- **target**: Random variable(count or number) which belongs to a Poisson distribution.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as pred. For example, if pred has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: Average loss (shape=(1,1)) of the loss tensor with shape (batch_size,).
=cut

method hybrid_forward(
GluonClass $F, GluonInput $pred, GluonInput $target,
Maybe[GluonInput] $sample_weight=, Maybe[Num] $epsilon=1e-08
)
{
$target = __PACKAGE__->_reshape_like($F, $target, $pred);
my $loss;
if($self->from_logits)
{
$loss = $F->exp($pred) - $target * $pred;
}
else
{
$loss = $pred - $target * $F->log($pred + $epsilon);
if($self->compute_full)
{
my $stirling_factor = $target * $F->log($target) - $target + 0.5 * $F->log(2 * $target * 3.1415926);
$stirling_factor *= ($target > 1);
$loss += $stirling_factor;
}
$loss = __PACKAGE__->_apply_weighting($F, $loss, $self->weight, $sample_weight);
}
return $F->mean($loss);
}

__PACKAGE__->register('AI::MXNet::Gluon::Loss');

package AI::MXNet::Gluon::CosineEmbeddingLoss;
use AI::MXNet::Gluon::Mouse;
extends 'AI::MXNet::Gluon::Loss';
has 'margin' => (is => 'rw', isa => 'Num', default => 0);

=head1 NAME
AI::MXNet::Gluon::CosineEmbeddingLoss
=cut

=head1 DESCRIPTION
For a target label 1 or -1, vectors input1 and input2, the function computes the cosine distance
between the vectors. This can be interpreted as how similar/dissimilar two input vectors are.
.. math::
L = \sum_i \begin{cases} 1 - {cos\_sim({input1}_i, {input2}_i)} & \text{ if } {label}_i = 1\\
{cos\_sim({input1}_i, {input2}_i)} & \text{ if } {label}_i = -1 \end{cases}\\
cos\_sim(input1, input2) = \frac{{input1}_i.{input2}_i}{||{input1}_i||.||{input2}_i||}
`input1`, `input2` can have arbitrary shape as long as they have the same number of elements.
Parameters
----------
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
margin : float
Margin of separation between correct and incorrect pair.
Inputs:
- **input1**: a tensor with arbitrary shape
- **input2**: another tensor with same shape as pred to which input1 is
compared for similarity and loss calculation
- **label**: A 1-D tensor indicating for each pair input1 and input2, target label is 1 or -1
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as input1. For example, if input1 has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: The loss tensor with shape (batch_size,).
=cut

method hybrid_forward(
GluonClass $F, GluonInput $input1, GluonInput $input2, GluonInput $label, Maybe[GluonInput] $sample_weight=
)
{
$input1 = __PACKAGE__->_reshape_like($F, $input1, $input2);
$label = $label->reshape([-1, 1]);
my $cos_sim = $self->_cosine_similarity($F, $input1, $input2);
my $y_1 = $label == 1;
my $y_minus_1 = $label == -1;
my $cos_sim_a = (1 - $cos_sim) * $y_1;

my $z_array;
if($F eq 'AI::MXNet::NDArray')
{
$z_array = $F->array([0]);
}
else
{
$z_array = $F->zeros([1, 1]);
}
my $cos_sim_b = $F->broadcast_maximum($z_array, $y_minus_1 * ($cos_sim - $self->margin), { axis=>1 });
my $loss = $cos_sim_a + $cos_sim_b;
$loss = __PACKAGE__->_apply_weighting($F, $loss, $self->weight, $sample_weight);
return $loss;
}

method _cosine_similarity($F, $x, $y, $axis=-1)
{
my $x_norm = $F->norm($x, axis=>$axis)->reshape([-1, 1]);
my $y_norm = $F->norm($y, axis=>$axis)->reshape([-1, 1]);
my $x_dot_y = $F->sum($x*$y, axis=>$axis)->reshape([-1, 1]);
my $eps_arr;
if($F eq 'AI::MXNet::NDArray')
{
$eps_arr = $F->array([1e-12]);
}
else
{
$eps_arr = $F->full([1, 1], 1e-12);
}
return ($x_dot_y / $F->broadcast_maximum($x_norm * $y_norm, $eps_arr));
}

__PACKAGE__->register('AI::MXNet::Gluon::Loss');

1;
Loading