Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

add backgroud class in box_nms #14058

Merged
merged 3 commits into from
Mar 11, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 22 additions & 2 deletions src/operator/contrib/bounding_box-common.h
Original file line number Diff line number Diff line change
Expand Up @@ -114,12 +114,32 @@ struct nms_impl {

namespace mshadow_op {
struct less_than : public mxnet_op::tunable {
// a is x, b is sigma
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a, DType b) {
return static_cast<DType>(a < b);
}
}; // struct equal_to
};

struct greater_than : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a, DType b) {
return static_cast<DType>(a > b);
}
};

struct not_equal : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a, DType b) {
return static_cast<DType>(a != b);
}
};

struct bool_and : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a, DType b) {
return static_cast<DType>(a && b);
}
};
} // namespace mshadow_op

} // namespace op
Expand Down
26 changes: 10 additions & 16 deletions src/operator/contrib/bounding_box-inl.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -38,26 +38,20 @@ namespace mxnet {
namespace op {

template<typename DType>
struct valid_score {
DType thresh;
explicit valid_score(DType _thresh) : thresh(_thresh) {}
struct valid_value {
__host__ __device__ bool operator()(const DType x) {
return x > thresh;
return static_cast<bool>(x);
}
};

template<typename DType>
int FilterScores(mshadow::Tensor<gpu, 1, DType> out_scores,
mshadow::Tensor<gpu, 1, int32_t> out_sorted_index,
mshadow::Tensor<gpu, 1, DType> scores,
mshadow::Tensor<gpu, 1, int32_t> sorted_index,
float valid_thresh) {
valid_score<DType> pred(static_cast<DType>(valid_thresh));
DType * end_scores = thrust::copy_if(thrust::device, scores.dptr_, scores.dptr_ + scores.MSize(),
out_scores.dptr_, pred);
thrust::copy_if(thrust::device, sorted_index.dptr_, sorted_index.dptr_ + sorted_index.MSize(),
scores.dptr_, out_sorted_index.dptr_, pred);
return end_scores - out_scores.dptr_;
template<typename DType, typename FType>
int CopyIf(mshadow::Tensor<gpu, 1, DType> out,
mshadow::Tensor<gpu, 1, DType> value,
mshadow::Tensor<gpu, 1, FType> flag) {
valid_value<FType> pred;
DType *end_out = thrust::copy_if(thrust::device, value.dptr_, value.dptr_ + value.MSize(),
flag.dptr_, out.dptr_, pred);
return end_out - out.dptr_;
}

// compute line intersect along either height or width
Expand Down
49 changes: 32 additions & 17 deletions src/operator/contrib/bounding_box-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ struct BoxNMSParam : public dmlc::Parameter<BoxNMSParam> {
int coord_start;
int score_index;
int id_index;
int background_id;
bool force_suppress;
int in_format;
int out_format;
Expand All @@ -67,6 +68,8 @@ struct BoxNMSParam : public dmlc::Parameter<BoxNMSParam> {
.describe("Index of the scores/confidence of boxes.");
DMLC_DECLARE_FIELD(id_index).set_default(-1)
.describe("Optional, index of the class categories, -1 to disable.");
DMLC_DECLARE_FIELD(background_id).set_default(-1)
.describe("Optional, id of the background class which will be ignored in nms.");
DMLC_DECLARE_FIELD(force_suppress).set_default(false)
.describe("Optional, if set false and id_index is provided, nms will only apply"
" to boxes belongs to the same category");
Expand Down Expand Up @@ -103,7 +106,7 @@ inline bool BoxNMSShape(const nnvm::NodeAttrs& attrs,
<< ishape << " provided";
int width_elem = ishape[indim - 1];
int expected = 5;
if (param.id_index > 0) {
if (param.id_index >= 0) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

curious to know why this change?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think the valid id_index should be >= 0 instead of just > 0. Surely, this line is not relevant to this PR.

expected += 1;
}
CHECK_GE(width_elem, expected)
Expand Down Expand Up @@ -145,24 +148,20 @@ inline uint32_t BoxNMSNumVisibleOutputs(const NodeAttrs& attrs) {
return static_cast<uint32_t>(1);
}

template<typename DType>
int FilterScores(mshadow::Tensor<cpu, 1, DType> out_scores,
mshadow::Tensor<cpu, 1, int32_t> out_sorted_index,
mshadow::Tensor<cpu, 1, DType> scores,
mshadow::Tensor<cpu, 1, int32_t> sorted_index,
float valid_thresh) {
template<typename DType, typename FType>
int CopyIf(mshadow::Tensor<cpu, 1, DType> out,
mshadow::Tensor<cpu, 1, DType> value,
mshadow::Tensor<cpu, 1, FType> flag) {
index_t j = 0;
for (index_t i = 0; i < scores.size(0); i++) {
if (scores[i] > valid_thresh) {
out_scores[j] = scores[i];
out_sorted_index[j] = sorted_index[i];
for (index_t i = 0; i < flag.size(0); i++) {
if (static_cast<bool>(flag[i])) {
out[j] = value[i];
j++;
}
}
return j;
}


struct corner_to_center {
template<typename DType>
MSHADOW_XINLINE static void Map(int i, DType *data, int stride) {
Expand Down Expand Up @@ -351,6 +350,7 @@ void BoxNMSForward(const nnvm::NodeAttrs& attrs,
int num_batch = indim <= 2? 1 : in_shape.ProdShape(0, indim - 2);
int num_elem = in_shape[indim - 2];
int width_elem = in_shape[indim - 1];
bool class_exist = param.id_index >= 0;
MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, {
Tensor<xpu, 3, DType> data = inputs[box_nms_enum::kData]
.get_with_shape<xpu, 3, DType>(Shape3(num_batch, num_elem, width_elem), s);
Expand All @@ -366,7 +366,7 @@ void BoxNMSForward(const nnvm::NodeAttrs& attrs,

// index
index_t int32_size = sort_index_shape.Size() * 3 + batch_start_shape.Size();
index_t dtype_size = sort_index_shape.Size() * 2;
index_t dtype_size = sort_index_shape.Size() * 3;
if (req[0] == kWriteInplace) {
dtype_size += buffer_shape.Size();
}
Expand All @@ -385,6 +385,7 @@ void BoxNMSForward(const nnvm::NodeAttrs& attrs,
Tensor<xpu, 1, DType> scores(workspace.dptr_ + int32_offset,
sort_index_shape, s);
Tensor<xpu, 1, DType> areas(scores.dptr_ + scores.MSize(), sort_index_shape, s);
Tensor<xpu, 1, DType> classes(areas.dptr_ + areas.MSize(), sort_index_shape, s);
Tensor<xpu, 3, DType> buffer = data;
if (req[0] == kWriteInplace) {
// make copy
Expand All @@ -405,16 +406,30 @@ void BoxNMSForward(const nnvm::NodeAttrs& attrs,
return;
}

// use batch_id and areas as temporary storage
// use classes, areas and scores as temporary storage
Tensor<xpu, 1, DType> all_scores = areas;
// Tensor<xpu, 1, DType> all_sorted_index = areas;
all_scores = reshape(slice<2>(buffer, score_index, score_index + 1), all_scores.shape_);
all_sorted_index = range<int32_t>(0, num_batch * num_elem);
Tensor<xpu, 1, DType> all_classes = classes;
if (class_exist) {
all_classes = reshape(slice<2>(buffer, id_index, id_index + 1), classes.shape_);
}

// filter scores but keep original sorted_index value
// move valid score and index to the front, return valid size
int num_valid = mxnet::op::FilterScores(scores, sorted_index, all_scores, all_sorted_index,
param.valid_thresh);
Tensor<xpu, 1, DType> valid_box = scores;
if (class_exist) {
valid_box = F<mshadow_op::bool_and>(
F<mshadow_op::greater_than>(all_scores, ScalarExp<DType>(param.valid_thresh)),
F<mshadow_op::not_equal>(all_classes, ScalarExp<DType>(param.background_id)));
} else {
valid_box = F<mshadow_op::greater_than>(all_scores, ScalarExp<DType>(param.valid_thresh));
}
classes = F<mshadow_op::identity>(valid_box);
valid_box = classes;
int num_valid = mxnet::op::CopyIf(scores, all_scores, valid_box);
mxnet::op::CopyIf(sorted_index, all_sorted_index, valid_box);

// if everything is filtered, output -1
if (num_valid == 0) {
record = -1;
Expand Down
8 changes: 6 additions & 2 deletions src/operator/contrib/bounding_box.cc
Original file line number Diff line number Diff line change
Expand Up @@ -38,8 +38,9 @@ NNVM_REGISTER_OP(_contrib_box_nms)
.describe(R"code(Apply non-maximum suppression to input.

The output will be sorted in descending order according to `score`. Boxes with
overlaps larger than `overlap_thresh` and smaller scores will be removed and
filled with -1, the corresponding position will be recorded for backward propogation.
overlaps larger than `overlap_thresh`, smaller scores and background boxes
will be removed and filled with -1, the corresponding position will be recorded
for backward propogation.

During back-propagation, the gradient will be copied to the original
position according to the input index. For positions that have been suppressed,
Expand All @@ -60,6 +61,9 @@ additional elements are allowed.
- `id_index`: optional, use -1 to ignore, useful if `force_suppress=False`, which means
we will skip highly overlapped boxes if one is `apple` while the other is `car`.

- `background_id`: optional, default=-1, class id for background boxes, useful
when `id_index >= 0` which means boxes with background id will be filtered before nms.

- `coord_start`: required, default=2, the starting index of the 4 coordinates.
Two formats are supported:

Expand Down
41 changes: 32 additions & 9 deletions tests/python/unittest/test_contrib_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,23 +26,23 @@
import unittest

def test_box_nms_op():
def test_box_nms_forward(data, expected, thresh=0.5, valid=0, topk=-1, coord=2, score=1, cid=0,
force=False, in_format='corner', out_format='corner'):
def test_box_nms_forward(data, expected, thresh=0.5, valid=0, topk=-1, coord=2, score=1, cid=0, bid=-1,
force=False, in_format='corner', out_format='corner'):
for dtype in ['float16', 'float32', 'float64']:
data = mx.nd.array(data, dtype=dtype)
out = mx.contrib.nd.box_nms(data, overlap_thresh=thresh, valid_thresh=valid, topk=topk,
coord_start=coord, score_index=score, id_index=cid,
force_suppress=force, in_format=in_format, out_format=out_format)
coord_start=coord, score_index=score, id_index=cid, background_id=bid,
force_suppress=force, in_format=in_format, out_format=out_format)
assert_almost_equal(out.asnumpy(), expected.astype(dtype), rtol=1e-3, atol=1e-3)

def test_box_nms_backward(data, grad, expected, thresh=0.5, valid=0, topk=-1, coord=2, score=1,
cid=0, force=False, in_format='corner', out_format='corner'):
cid=0, bid=-1, force=False, in_format='corner', out_format='corner'):
in_var = mx.sym.Variable('data')
arr_data = mx.nd.array(data)
arr_grad = mx.nd.empty(arr_data.shape)
op = mx.contrib.sym.box_nms(in_var, overlap_thresh=thresh, valid_thresh=valid, topk=topk,
coord_start=coord, score_index=score, id_index=cid,
force_suppress=force, in_format=in_format, out_format=out_format)
coord_start=coord, score_index=score, id_index=cid, background_id=bid,
force_suppress=force, in_format=in_format, out_format=out_format)
exe = op.bind(ctx=default_context(), args=[arr_data], args_grad=[arr_grad])
exe.forward(is_train=True)
exe.backward(mx.nd.array(grad))
Expand Down Expand Up @@ -91,8 +91,8 @@ def swap_position(data, expected, coord=2, score=1, cid=0, new_col=0):
[0, 0.3, 0.1, 0.1, 0.14, 0.14], [2, 0.6, 0.5, 0.5, 0.7, 0.8]]

# case1
force=True
thresh=0.5
force = True
thresh = 0.5
expected = [[2, 0.6, 0.5, 0.5, 0.7, 0.8], [0, 0.5, 0.1, 0.1, 0.2, 0.2],
[0, 0.3, 0.1, 0.1, 0.14, 0.14], [-1, -1, -1, -1, -1, -1]]
grad = np.random.rand(4, 6)
Expand Down Expand Up @@ -176,6 +176,29 @@ def swap_position(data, expected, coord=2, score=1, cid=0, new_col=0):
test_box_nms_forward(np.array(boxes8), np.array(expected8), force=force, thresh=thresh, valid=valid, topk=topk)
test_box_nms_backward(np.array(boxes8), grad8, expected_in_grad8, force=force, thresh=thresh, valid=valid, topk=topk)

# case9: background id filter out
# default background id -1
boxes9 = [[0, 0.5, 0.1, 0.1, 0.2, 0.2], [0, 0.4, 0.1, 0.1, 0.2, 0.2],
[1, 0.3, 0.1, 0.1, 0.14, 0.14], [-1, 0.6, 0.5, 0.5, 0.7, 0.8]]
expected9 = [[0, 0.5, 0.1, 0.1, 0.2, 0.2], [1, 0.3, 0.1, 0.1, 0.14, 0.14],
[-1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1]]
force = True
thresh = 0.5
grad9 = np.random.rand(4, 6)
expected_in_grad9 = grad9[(0, 2, 1, 3), :]
expected_in_grad9[(1, 3), :] = 0
test_box_nms_forward(np.array(boxes9), np.array(expected9), force=force, thresh=thresh)
test_box_nms_backward(np.array(boxes9), grad9, expected_in_grad9, force=force, thresh=thresh)
# set background id
background_id = 0
expected9 = [[-1, 0.6, 0.5, 0.5, 0.7, 0.8], [1, 0.3, 0.1, 0.1, 0.14, 0.14],
[-1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1]]
grad9 = np.random.rand(4, 6)
expected_in_grad9 = grad9[(2, 3, 1, 0), :]
expected_in_grad9[(0, 1), :] = 0
test_box_nms_forward(np.array(boxes9), np.array(expected9), force=force, thresh=thresh, bid=background_id)
test_box_nms_backward(np.array(boxes9), grad9, expected_in_grad9, force=force, thresh=thresh, bid=background_id)

def test_box_iou_op():
def numpy_box_iou(a, b, fmt='corner'):
def area(left, top, right, bottom):
Expand Down