Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Julia: split ndarray.jl into several snippets #14001

Merged
merged 1 commit into from
Jan 30, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1,827 changes: 14 additions & 1,813 deletions julia/src/ndarray.jl

Large diffs are not rendered by default.

87 changes: 87 additions & 0 deletions julia/src/ndarray/activation.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

# activation functions

@doc doc"""
σ.(x::NDArray)
sigmoid.(x::NDArray)

Computes sigmoid of x element-wise.

```math
σ(x) = \frac{1}{(1 + exp(-x))}
```

The storage type of `sigmoid` output is always dense.
"""
function σ end
const sigmoid = σ
_nddoc[:σ] = false
@_remap broadcasted(::typeof(σ), x::NDArray) sigmoid(x)

@doc doc"""
relu.(x::NDArray)

Computes rectified linear.

```math
\max(x, 0)
```
"""
function relu end
_nddoc[:relu] = false
@_remap broadcasted(::typeof(relu), x::NDArray) relu(x)

@doc doc"""
softmax.(x::NDArray, [dim = ndims(x)])

Applies the softmax function.

The resulting array contains elements in the range `(0, 1)`
and the elements along the given axis sum up to 1.

```math
softmax(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}
```
"""
function softmax end
_nddoc[:softmax] = false
@_remap broadcasted(::typeof(softmax), x::NDArray) softmax(x; axis = -ndims(x))
@_remap broadcasted(::typeof(softmax), x::NDArray, dim::Int) softmax(x; axis = -dim)

"""
log_softmax.(x::NDArray, [dim = ndims(x)])

Computes the log softmax of the input.
This is equivalent to computing softmax followed by log.

julia> x
2×3 mx.NDArray{Float64,2} @ CPU0:
1.0 2.0 0.1
0.1 2.0 1.0

julia> mx.log_softmax.(x)
2×3 mx.NDArray{Float64,2} @ CPU0:
-1.41703 -0.41703 -2.31703
-2.31703 -0.41703 -1.41703
"""
function log_softmax end
_nddoc[:log_softmax] = false
@_remap broadcasted(::typeof(log_softmax), x::NDArray) log_softmax(x; axis = -ndims(x))
@_remap broadcasted(::typeof(log_softmax), x::NDArray, dim::Int) log_softmax(x; axis = -dim)

291 changes: 291 additions & 0 deletions julia/src/ndarray/arithmetic.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,291 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import Base: +

"""
+(args...)
.+(args...)

Summation. Multiple arguments of either scalar or `NDArray` could be
added together. Note at least the first or second argument needs to be an
`NDArray` to avoid ambiguity of built-in summation.
"""
+(x::NDArray) = x
+(x::NDArray, y::NDArray) = _plus(x, y)
+(x::NDArray, y::Real) = _plus_scalar(x, scalar = y)
+(y::Real, x::NDArray) = _plus_scalar(x, scalar = y)

broadcasted(::typeof(+), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} =
_broadcast_add(x, y)

"""
sub_from!(dst::NDArray, args::NDArrayOrReal...)

Subtract a bunch of arguments from `dst`. Inplace updating.
"""
function sub_from!(dst::NDArray, arg::NDArrayOrReal)
@assert dst.writable
if isa(arg, Real)
_minus_scalar(dst, scalar = arg, out = dst)
else
_minus!(dst, arg)
end
dst
end

import Base: -

"""
-(x::NDArray)
-(x, y)
.-(x, y)

Subtraction `x - y`, of scalar types or `NDArray`.
Or create the negative of `x`.
"""
-(x::NDArray) = _mul_scalar(x, scalar = -one(eltype(x)))
-(x::NDArray, y::NDArray) = _minus(x, y)
-(x::NDArray, y::Real) = _minus_scalar(x, scalar = y)
-(y::Real, x::NDArray) = _rminus_scalar(x, scalar = y)

broadcasted(::typeof(-), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} =
_broadcast_minus(x, y)

"""
mul_to!(dst::NDArray, arg::NDArrayOrReal)

Elementwise multiplication into `dst` of either a scalar or an `NDArray` of the same shape.
Inplace updating.
"""
function mul_to!(dst::NDArray, arg::NDArrayOrReal)
@assert dst.writable
if isa(arg, Real)
_mul_scalar(dst, scalar = arg, out = dst)
else
_mul(dst, arg, out = dst)
end
dst
end

import Base: *

"""
.*(x, y)

Elementwise multiplication for `NDArray`.
"""
*(x::NDArray, y::Real) = _mul_scalar(x, scalar = y)
*(y::Real, x::NDArray) = _mul_scalar(x, scalar = y)

broadcasted(::typeof(*), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} =
_mul(x, y)
broadcasted(::typeof(*), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} =
_broadcast_mul(x, y)

"""
*(A::NDArray, B::NDArray)

Matrix/tensor multiplication.
"""
*(x::NDArray{T}, y::NDArray{T}) where T = x ⋅ y

LinearAlgebra.adjoint(x::NDArray{T,1}) where T = transpose(x)
LinearAlgebra.adjoint(x::NDArray{T,2}) where T = transpose(x)

"""
div_from!(dst::NDArray, arg::NDArrayOrReal)

Elementwise divide a scalar or an `NDArray` of the same shape from `dst`. Inplace updating.
"""
function div_from!(dst::NDArray, arg::NDArrayOrReal)
@assert dst.writable
if isa(arg, Real)
_div_scalar(dst, scalar = arg, out = dst)
else
_div(dst, arg, out = dst)
end
dst
end

function div_from!(dst::NDArray{T}, arg::Real) where {T<:Integer}
@assert dst.writable
@assert(round(T, arg) != zero(T), "Integer divided by zero")
_div_scalar(dst, scalar = arg, out = dst)
dst
end

"""
rdiv_from!(x:: Real, y::NDArray)

Elementwise divide a scalar by an `NDArray`. Inplace updating.
"""
function rdiv_from!(x::Real, y::NDArray)
@assert y.writable
_rdiv_scalar(y, scalar = x, out = y)
y
end

import Base: /

"""
./(x::NDArray, y::NDArray)
./(x::NDArray, y::Real)
./(x::Real, y::NDArray)

* Elementwise dividing an `NDArray` by a scalar or another `NDArray`
of the same shape.

* Elementwise divide a scalar by an `NDArray`.

* Matrix division (solving linear systems) is not implemented yet.
"""
/(x::NDArray, y::Real) = _div_scalar(x, scalar = y)

broadcasted(::typeof(/), y::Real, x::NDArray) = _rdiv_scalar(x, scalar = y)
broadcasted(::typeof(/), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} =
_div(x, y)
broadcasted(::typeof(/), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} =
_broadcast_div(x, y)

function broadcasted(::typeof(/), x::NDArray{T}, y::Real) where {T<:Integer}
@assert(round(T, y) != zero(T), "Integer divided by zero")
_div_scalar(x, scalar = y)
end

"""
mod_from!(x::NDArray, y::NDArray)
mod_from!(x::NDArray, y::Real)

Elementwise modulo for `NDArray`.
Inplace updating.
"""
mod_from!(x::NDArray, y::NDArray) = _mod!(x, y)
mod_from!(x::NDArray, y::Real) = _mod_scalar!(x, y)

"""
rmod_from!(y::Real, x::NDArray)

Elementwise modulo for `NDArray`.
Inplace updating.
"""
rmod_from!(y::Real, x::NDArray) = _rmod_scalar!(x, y)

import Base: %

"""
.%(x::NDArray, y::NDArray)
.%(x::NDArray, y::Real)
.%(x::Real, y::NDArray)

Elementwise modulo for `NDArray`.
"""
%(x::NDArray, y::Real) = _mod_scalar(x, y)

broadcasted(::typeof(%), y::Real, x::NDArray) = _rmod_scalar(x, y)
broadcasted(::typeof(%), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} =
_mod(x, y)
broadcasted(::typeof(%), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} =
_broadcast_mod(x, y)

# document of `.^` is merged into SymbolicNode's

broadcasted(::typeof(Base.literal_pow), ::typeof(^), x::NDArray, ::Val{s}) where {s} =
_power_scalar(x, scalar = s)
broadcasted(::typeof(^), x::NDArray, s::Real) = _power_scalar(x, scalar = s)
broadcasted(::typeof(^), s::Real, x::NDArray) = _rpower_scalar(x, scalar = s)

broadcasted(::typeof(^), ::Irrational{:ℯ}, x::NDArray) = exp(x)
broadcasted(::typeof(^), x::NDArray, s::Irrational) = _power_scalar(x, scalar = s)
broadcasted(::typeof(^), s::Irrational, x::NDArray) = _rpower_scalar(x, scalar = s)

broadcasted(::typeof(^), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} =
_power(x, y)
broadcasted(::typeof(^), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} =
_broadcast_power(x, y)

_nddoc[:clip] = _nddoc[:clip!] =
"""
clip(x::NDArray, min, max)
clip!(x::NDArray, min, max)

Clips (limits) the values in `NDArray`.
Given an interval, values outside the interval are clipped to the interval edges.
Clipping `x` between `min` and `x` would be:

```julia
clip(x, min_, max_) = max(min(x, max_), min_))
```

```jldoctest
julia> x = NDArray(1:9);

julia> mx.clip(x, 2, 8)'
1×9 mx.NDArray{Int64,2} @ CPU0:
2 2 3 4 5 6 7 8 8
```

The storage type of clip output depends on storage types of inputs and the
`min`, `max` parameter values:

- clip(default) = default
- clip(row_sparse, min <= 0, max >= 0) = row_sparse
- clip(csr, min <= 0, max >= 0) = csr
- clip(row_sparse, min < 0, max < 0) = default
- clip(row_sparse, min > 0, max > 0) = default
- clip(csr, min < 0, max < 0) = csr
- clip(csr, min > 0, max > 0) = csr
"""
@_remap clip(x::NDArray, min::Real, max::Real) clip(x; a_min = min, a_max = max)
@_remap clip!(x::NDArray, min::Real, max::Real) clip(x; a_min = min, a_max = max)

################################################################################
# remapping to solving type unstablility
################################################################################

@_remap _plus(x::NDArray, y::NDArray) _plus(x, y)
@_remap _plus!(x::NDArray, y::NDArray) _plus(x, y)

@_remap _minus(x::NDArray, y::NDArray) _minus(x, y)
@_remap _minus!(x::NDArray, y::NDArray) _minus(x, y)

@_remap _mod(x::NDArray, y::NDArray) _mod(x, y)
@_remap _mod!(x::NDArray, y::NDArray) _mod(x, y)

@_remap _mod_scalar(x::NDArray, y::Real) _mod_scalar(x; scalar = y)
@_remap _mod_scalar!(x::NDArray, y::Real) _mod_scalar(x; scalar = y)

@_remap _rmod_scalar(x::NDArray, y::Real) _rmod_scalar(x; scalar = y)
@_remap _rmod_scalar!(x::NDArray, y::Real) _rmod_scalar(x; scalar = y)

@_remap _broadcast_add(x::NDArray, y::NDArray) broadcast_add(x, y)
@_remap _broadcast_add!(x::NDArray, y::NDArray) broadcast_add(x, y)

@_remap _broadcast_minus(x::NDArray, y::NDArray) broadcast_minus(x, y)
@_remap _broadcast_minus!(x::NDArray, y::NDArray) broadcast_minus(x, y)

@_remap _broadcast_mul(x::NDArray, y::NDArray) broadcast_mul(x, y)
@_remap _broadcast_mul!(x::NDArray, y::NDArray) broadcast_mul(x, y)

@_remap _broadcast_div(x::NDArray, y::NDArray) broadcast_div(x, y)
@_remap _broadcast_div!(x::NDArray, y::NDArray) broadcast_div(x, y)

@_remap _broadcast_mod(x::NDArray, y::NDArray) broadcast_mod(x, y)
@_remap _broadcast_mod!(x::NDArray, y::NDArray) broadcast_mod(x, y)

@_remap _broadcast_power(x::NDArray, y::NDArray) broadcast_power(x, y)
@_remap _broadcast_power!(x::NDArray, y::NDArray) broadcast_power(x, y)
Loading