Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Add an inference script providing both accuracy and benchmark result for original wide_n_deep example #13895

Merged
merged 7 commits into from
Feb 16, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion example/sparse/wide_deep/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,5 +3,8 @@
The example demonstrates how to train [wide and deep model](https://arxiv.org/abs/1606.07792). The [Census Income Data Set](https://archive.ics.uci.edu/ml/datasets/Census+Income) that this example uses for training is hosted by the [UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/). Tricks of feature engineering are adapted from tensorflow's [wide and deep tutorial](/~https://github.com/tensorflow/models/tree/master/official/wide_deep).

The final accuracy should be around 85%.

For training:
- `python train.py`

For inference:
- `python inference.py`
28 changes: 28 additions & 0 deletions example/sparse/wide_deep/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

# Related to feature engineering, please see preprocess in data.py
ADULT = {
'train': 'adult.data',
'test': 'adult.test',
'url': 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/',
'num_linear_features': 3000,
'num_embed_features': 2,
'num_cont_features': 38,
'embed_input_dims': [1000, 1000],
'hidden_units': [8, 50, 100],
}
106 changes: 106 additions & 0 deletions example/sparse/wide_deep/inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Licensed to the Apache Software Foundation (ASF) under one
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we add python3 shebang?

Copy link
Contributor Author

@juliusshufan juliusshufan Jan 23, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi Larroy,

thanks for review, I think this script can work with Python2, it might be fine without python3 shebang?

Thanks.

# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import mxnet as mx
from mxnet.test_utils import *
from config import *
from data import get_uci_adult
from model import wide_deep_model
import argparse
import os
import time

parser = argparse.ArgumentParser(description="Run sparse wide and deep inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--num-infer-batch', type=int, default=100,
help='number of batches to inference')
parser.add_argument('--load-epoch', type=int, default=0,
help='loading the params of the corresponding training epoch.')
parser.add_argument('--batch-size', type=int, default=100,
help='number of examples per batch')
parser.add_argument('--benchmark', action='store_true', default=False,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How about only have --benchmark here and remove --accuracy? If --benchmark is given in the command line, it will do benchmarking with dummy data, otherwise the script will run with real data and print the final accuracy.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thanks for review and agree, revised accordingly.

help='run the script for benchmark mode, not set for accuracy test.')
parser.add_argument('--verbose', action='store_true', default=False,
help='accurcy for each batch will be logged if set')
parser.add_argument('--gpu', action='store_true', default=False,
help='Inference on GPU with CUDA')
parser.add_argument('--model-prefix', type=str, default='checkpoint',
help='the model prefix')

if __name__ == '__main__':
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

could we wrap it into a main function as:

if __name__ == '__main__':
    sys.exit(main())

Copy link
Contributor Author

@juliusshufan juliusshufan Jan 30, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi Larroy,

Seems sys only supported by python3, which may introduce incompatibility to python2, meanwhile, I just follow the "structure" of exiting train.py to implement the inference.py. thanks

import logging
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.INFO, format=head)

# arg parser
args = parser.parse_args()
logging.info(args)
num_iters = args.num_infer_batch
batch_size = args.batch_size
benchmark = args.benchmark
verbose = args.verbose
model_prefix = args.model_prefix
load_epoch = args.load_epoch
ctx = mx.gpu(0) if args.gpu else mx.cpu()
# dataset
data_dir = os.path.join(os.getcwd(), 'data')
val_data = os.path.join(data_dir, ADULT['test'])
val_csr, val_dns, val_label = get_uci_adult(data_dir, ADULT['test'], ADULT['url'])
# load parameters and symbol
sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, load_epoch)
# data iterator
eval_data = mx.io.NDArrayIter({'csr_data': val_csr, 'dns_data': val_dns},
{'softmax_label': val_label}, batch_size,
shuffle=True, last_batch_handle='discard')
# module
mod = mx.mod.Module(symbol=sym, context=ctx, data_names=['csr_data', 'dns_data'],
label_names=['softmax_label'])
mod.bind(data_shapes=eval_data.provide_data, label_shapes=eval_data.provide_label)
# get the sparse weight parameter
mod.set_params(arg_params=arg_params, aux_params=aux_params)

data_iter = iter(eval_data)
nbatch = 0
if benchmark:
logging.info('Inference benchmark started ...')
tic = time.time()
for i in range(num_iters):
try:
batch = data_iter.next()
except StopIteration:
data_iter.reset()
else:
mod.forward(batch, is_train=False)
for output in mod.get_outputs():
output.wait_to_read()
nbatch += 1
score = (nbatch*batch_size)/(time.time() - tic)
logging.info('batch size %d, process %s samples/s' % (batch_size, score))
else:
logging.info('Inference started ...')
# use accuracy as the metric
metric = mx.metric.create(['acc'])
accuracy_avg = 0.0
for batch in data_iter:
nbatch += 1
metric.reset()
mod.forward(batch, is_train=False)
mod.update_metric(metric, batch.label)
accuracy_avg += metric.get()[1][0]
if args.verbose:
logging.info('batch %d, accuracy = %s' % (nbatch, metric.get()))
logging.info('averged accuracy on eval set is %.5f' % (accuracy_avg/nbatch))
20 changes: 4 additions & 16 deletions example/sparse/wide_deep/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@

import mxnet as mx
from mxnet.test_utils import *
from config import *
from data import get_uci_adult
from model import wide_deep_model
import argparse
Expand All @@ -31,7 +32,7 @@
help='number of examples per batch')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate')
parser.add_argument('--cuda', action='store_true', default=False,
parser.add_argument('--gpu', action='store_true', default=False,
help='Train on GPU with CUDA')
parser.add_argument('--optimizer', type=str, default='adam',
help='what optimizer to use',
Expand All @@ -40,19 +41,6 @@
help='number of batches to wait before logging training status')


# Related to feature engineering, please see preprocess in data.py
ADULT = {
'train': 'adult.data',
'test': 'adult.test',
'url': 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/',
'num_linear_features': 3000,
'num_embed_features': 2,
'num_cont_features': 38,
'embed_input_dims': [1000, 1000],
'hidden_units': [8, 50, 100],
}


if __name__ == '__main__':
import logging
head = '%(asctime)-15s %(message)s'
Expand All @@ -66,7 +54,7 @@
optimizer = args.optimizer
log_interval = args.log_interval
lr = args.lr
ctx = mx.gpu(0) if args.cuda else mx.cpu()
ctx = mx.gpu(0) if args.gpu else mx.cpu()

# dataset
data_dir = os.path.join(os.getcwd(), 'data')
Expand All @@ -88,7 +76,7 @@
shuffle=True, last_batch_handle='discard')

# module
mod = mx.mod.Module(symbol=model, context=ctx ,data_names=['csr_data', 'dns_data'],
mod = mx.mod.Module(symbol=model, context=ctx, data_names=['csr_data', 'dns_data'],
label_names=['softmax_label'])
mod.bind(data_shapes=train_data.provide_data, label_shapes=train_data.provide_label)
mod.init_params()
Expand Down