Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[MXNET-880] ONNX export: Random uniform, Random normal, MaxRoiPool #13676

Merged
merged 3 commits into from
Jan 10, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 73 additions & 0 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -1738,3 +1738,76 @@ def convert_multinomial(node, **kwargs):
name=name,
)
return [node]


@mx_op.register("_random_uniform")
def convert_random_uniform(node, **kwargs):
"""Map MXNet's random_uniform operator attributes to onnx's RandomUniform
operator and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)

# Converting to float32
low = float(attrs.get("low", 0))
high = float(attrs.get("high", 1.0))
shape = convert_string_to_list(attrs.get('shape', '[]'))
dtype = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(attrs.get('dtype', 'float32'))]

node = onnx.helper.make_node(
'RandomUniform',
input_nodes,
[name],
low=low,
high=high,
dtype=dtype,
shape=shape,
name=name
)
return [node]


@mx_op.register("_random_normal")
def convert_random_normal(node, **kwargs):
"""Map MXNet's random_normal operator attributes to onnx's RandomNormal
operator and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)

# Converting to float32
mean = float(attrs.get("loc", 0))
scale = float(attrs.get("scale", 1.0))
shape = convert_string_to_list(attrs.get('shape', '[]'))
dtype = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(attrs.get('dtype', 'float32'))]

node = onnx.helper.make_node(
'RandomNormal',
input_nodes,
[name],
mean=mean,
scale=scale,
dtype=dtype,
shape=shape,
name=name
)
return [node]


@mx_op.register("ROIPooling")
def convert_roipooling(node, **kwargs):
"""Map MXNet's ROIPooling operator attributes to onnx's MaxRoiPool
operator and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)

pooled_shape = convert_string_to_list(attrs.get('pooled_size'))
scale = float(attrs.get("spatial_scale"))

node = onnx.helper.make_node(
'MaxRoiPool',
input_nodes,
[name],
pooled_shape=pooled_shape,
spatial_scale=scale,
name=name
)
return [node]
20 changes: 16 additions & 4 deletions python/mxnet/contrib/onnx/onnx2mx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,14 +29,26 @@ def identity(attrs, inputs, proto_obj):

def random_uniform(attrs, inputs, proto_obj):
"""Draw random samples from a uniform distribtuion."""
new_attr = translation_utils._remove_attributes(attrs, ['seed'])
return 'random_uniform', new_attr, inputs
try:
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
except ImportError:
raise ImportError("Onnx and protobuf need to be installed. "
"Instructions to install - /~https://github.com/onnx/onnx")
new_attrs = translation_utils._remove_attributes(attrs, ['seed'])
new_attrs['dtype'] = TENSOR_TYPE_TO_NP_TYPE[int(new_attrs.get('dtype', 1))]
return 'random_uniform', new_attrs, inputs

def random_normal(attrs, inputs, proto_obj):
"""Draw random samples from a Gaussian distribution."""
try:
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
except ImportError:
raise ImportError("Onnx and protobuf need to be installed. "
"Instructions to install - /~https://github.com/onnx/onnx")
new_attr = translation_utils._remove_attributes(attrs, ['seed'])
new_attr = translation_utils._fix_attribute_names(new_attr, {'mean' : 'loc'})
return 'random_uniform', new_attr, inputs
new_attr = translation_utils._fix_attribute_names(new_attr, {'mean': 'loc'})
new_attr['dtype'] = TENSOR_TYPE_TO_NP_TYPE[int(new_attr.get('dtype', 1))]
return 'random_normal', new_attr, inputs

def sample_multinomial(attrs, inputs, proto_obj):
"""Draw random samples from a multinomial distribution."""
Expand Down
25 changes: 21 additions & 4 deletions tests/python-pytest/onnx/test_node.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,9 +139,18 @@ def get_onnx_graph(testname, input_names, inputs, output_name, output_shape, att
test_name, mxnet_op, onnx_name, inputs, attrs, mxnet_specific, fix_attrs, check_value, check_shape = test
with self.subTest(test_name):
names, input_tensors, inputsym = get_input_tensors(inputs)
test_op = mxnet_op(*inputsym, **attrs)
mxnet_output = forward_pass(test_op, None, None, names, inputs)
outputshape = np.shape(mxnet_output)
if inputs:
test_op = mxnet_op(*inputsym, **attrs)
mxnet_output = forward_pass(test_op, None, None, names, inputs)
outputshape = np.shape(mxnet_output)
else:
test_op = mxnet_op(**attrs)
shape = attrs.get('shape', (1,))
x = mx.nd.zeros(shape, dtype='float32')
xgrad = mx.nd.zeros(shape, dtype='float32')
exe = test_op.bind(ctx=mx.cpu(), args={'x': x}, args_grad={'x': xgrad})
mxnet_output = exe.forward(is_train=False)[0].asnumpy()
outputshape = np.shape(mxnet_output)

if mxnet_specific:
onnxmodelfile = onnx_mxnet.export_model(test_op, {}, [np.shape(ip) for ip in inputs],
Expand Down Expand Up @@ -204,11 +213,19 @@ def get_onnx_graph(testname, input_names, inputs, output_name, output_shape, att
{'kernel': (4, 5), 'pad': (0, 0), 'stride': (1, 1), 'p_value': 2, 'pool_type': 'lp', 'global_pool': True}, False,
{'modify': {'p_value': 'p'},
'remove': ['pool_type', 'kernel', 'pad', 'stride', 'global_pool']}, True, False),
("test_roipool", mx.sym.ROIPooling, "MaxRoiPool",
[[[get_rnd(shape=(8, 6), low=1, high=100, dtype=np.int32)]], [[0, 0, 0, 4, 4]]],
{'pooled_size': (2, 2), 'spatial_scale': 0.7}, False,
{'modify': {'pooled_size': 'pooled_shape'}}, True, False),

# since results would be random, checking for shape alone
("test_multinomial", mx.sym.sample_multinomial, "Multinomial",
[np.array([0, 0.1, 0.2, 0.3, 0.4]).astype("float32")],
{'shape': (10,)}, False, {'modify': {'shape': 'sample_size'}}, False, True)
{'shape': (10,)}, False, {'modify': {'shape': 'sample_size'}}, False, True),
("test_random_normal", mx.sym.random_normal, "RandomNormal", [],
{'shape': (2, 2), 'loc': 0, 'scale': 1}, False, {'modify': {'loc': 'mean'}}, False, True),
("test_random_uniform", mx.sym.random_uniform, "RandomUniform", [],
{'shape': (2, 2), 'low': 0.5, 'high': 1.0}, False, {}, False, True)
]

if __name__ == '__main__':
Expand Down