Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[MXNET-1258]fix unittest for ROIAlign Operator #13609

Merged
merged 12 commits into from
Feb 5, 2019
144 changes: 78 additions & 66 deletions tests/python/unittest/test_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -6849,139 +6849,150 @@ def test_context_num_gpus():

@with_seed()
def test_op_roi_align():
# Adapted from /~https://github.com/wkcn/MobulaOP/blob/master/tests/test_roi_align_op.py
T = np.float32

def assert_same_dtype(dtype_a, dtype_b):
'''
Assert whether the two data type are the same
Parameters
----------
dtype_a, dtype_b: type
Input data types to compare
'''
assert dtype_a == dtype_b,\
TypeError('Unmatched data types: %s vs %s' % (dtype_a, dtype_b))

def bilinear_interpolate(bottom, height, width, y, x):
if y < -1.0 or y > height or x < -1.0 or x > width:
return 0.0, []
x = max(0.0, x)
y = max(0.0, y)
return T(0.0), []
x = T(max(0.0, x))
y = T(max(0.0, y))
x_low = int(x)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why not typecast x_low to np.float32 here itself and remove the many typecasting statements below?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The type of x_low is int in the C implementation.

In Python, the default type of float is float64, however the float type in the C implementation is float32.
If the types are not consistent, there will be calculation error.

So I use T to typecast some variables to np.float32 to keep the type consistency between C and Python unittest.

y_low = int(y)
if x_low >= width - 1:
x_low = x_high = width - 1
x = x_low
x = T(x_low)
else:
x_high = x_low + 1

if y_low >= height - 1:
y_low = y_high = height - 1
y = y_low
y = T(y_low)
else:
y_high = y_low + 1

ly = y - y_low
lx = x - x_low
hy = 1.0 - ly
hx = 1.0 - lx

ly = y - T(y_low)
lx = x - T(x_low)
hy = T(1.0) - ly
hx = T(1.0) - lx
v1 = bottom[y_low, x_low]
v2 = bottom[y_low, x_high]
v3 = bottom[y_high, x_low]
v4 = bottom[y_high, x_high]

'''
----------->x
|hx hy | lx hy
|------+------
|hx ly | lx ly
V
y
v1|v2
--+--
v3|v4
'''
w1 = hy * hx
w2 = hy * lx
w3 = ly * hx
w4 = ly * lx

assert_same_dtype(w1.dtype, T)
assert_same_dtype(w2.dtype, T)
assert_same_dtype(w3.dtype, T)
assert_same_dtype(w4.dtype, T)
val = w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4
assert_same_dtype(val.dtype, T)
grad = [(y_low, x_low, w1), (y_low, x_high, w2),
(y_high, x_low, w3), (y_high, x_high, w4)
]
]
return val, grad

def roialign_forward_backward(data, rois, pooled_size, spatial_scale, sampling_ratio,
position_sensitive, dy):
position_sensitive, dy):
N, C, H, W = data.shape
R = rois.shape[0]
PH, PW = pooled_size
assert len(rois.shape) == 2
assert rois.shape[1] == 5
assert rois.ndim == 2,\
ValueError(
'The ndim of rois should be 2 rather than %d' % rois.ndim)
assert rois.shape[1] == 5,\
ValueError(
'The length of the axis 1 of rois should be 5 rather than %d' % rois.shape[1])
assert_same_dtype(data.dtype, T)
assert_same_dtype(rois.dtype, T)

C_out = C // PH // PW if position_sensitive else C
out = np.zeros((R, C_out, PH, PW))
out = np.zeros((R, C_out, PH, PW), dtype=T)
dx = np.zeros_like(data)
drois = np.zeros_like(rois)

for r in range(R):
batch_ind = int(rois[r, 0])
sw, sh, ew, eh = rois[r, 1:5] * spatial_scale
roi_w = max(ew - sw, 1.0)
roi_h = max(eh - sh, 1.0)
bin_h = roi_h * 1.0 / PH
bin_w = roi_w * 1.0 / PW
sw, sh, ew, eh = rois[r, 1:5] * T(spatial_scale)
roi_w = T(max(ew - sw, 1.0))
roi_h = T(max(eh - sh, 1.0))
bin_h = roi_h / T(PH)
bin_w = roi_w / T(PW)
bdata = data[batch_ind]
if sampling_ratio > 0:
roi_bin_grid_h = roi_bin_grid_w = sampling_ratio
else:
roi_bin_grid_h = int(np.ceil(roi_h * 1.0 / PH))
roi_bin_grid_w = int(np.ceil(roi_w * 1.0 / PW))
count = roi_bin_grid_h * roi_bin_grid_w
roi_bin_grid_h = int(np.ceil(roi_h / T(PH)))
roi_bin_grid_w = int(np.ceil(roi_w / T(PW)))
count = T(roi_bin_grid_h * roi_bin_grid_w)
for c in range(C_out):
for ph in range(PH):
for pw in range(PW):
val = 0.0
val = T(0.0)
c_in = c * PH * PW + ph * PW + pw if position_sensitive else c
for iy in range(roi_bin_grid_h):
y = sh + ph * bin_h + (iy + 0.5) * bin_h / roi_bin_grid_h
y = sh + T(ph) * bin_h + (T(iy) + T(0.5)) * \
bin_h / T(roi_bin_grid_h)
for ix in range(roi_bin_grid_w):
x = sw + pw * bin_w + (ix + 0.5) * bin_w / roi_bin_grid_w
v, g = bilinear_interpolate(bdata[c_in], H, W, y, x)
x = sw + T(pw) * bin_w + (T(ix) + T(0.5)) * \
bin_w / T(roi_bin_grid_w)
v, g = bilinear_interpolate(
bdata[c_in], H, W, y, x)
assert_same_dtype(v.dtype, T)
val += v
# compute grad
for qy, qx, qw in g:
dx[batch_ind, c_in, qy, qx] += dy[r, c, ph, pw] * qw * 1.0 / count

out[r, c, ph, pw] = val * 1.0 / count
assert_same_dtype(qw.dtype, T)
dx[batch_ind, c_in, qy, qx] += dy[r,
c, ph, pw] * qw / count
out[r, c, ph, pw] = val / count
assert_same_dtype(out.dtype, T)
return out, [dx, drois]

def test_roi_align_value(sampling_ratio=0, position_sensitive=False):
ctx=default_context()
ctx = default_context()
dtype = np.float32

dlen = 224
N, C, H, W = 5, 3, 16, 16
assert H == W
R = 7
pooled_size = (3, 4)
C = C * pooled_size[0] * pooled_size[1] if position_sensitive else C

spatial_scale = H * 1.0 / dlen
data = mx.nd.array(np.arange(N*C*W*H).reshape((N,C,H,W)), ctx=ctx, dtype = dtype)
# data = mx.nd.random.uniform(0, 1, (N, C, H, W), dtype = dtype)
center_xy = mx.nd.random.uniform(0, dlen, (R, 2), ctx=ctx, dtype = dtype)
wh = mx.nd.random.uniform(0, dlen, (R, 2), ctx=ctx, dtype = dtype)
batch_ind = mx.nd.array(np.random.randint(0, N, size = (R,1)), ctx=ctx)
pos = mx.nd.concat(center_xy - wh / 2, center_xy + wh / 2, dim = 1)
rois = mx.nd.concat(batch_ind, pos, dim = 1)
data = mx.nd.array(
np.arange(N * C * W * H).reshape((N, C, H, W)), ctx=ctx, dtype=dtype)
center_xy = mx.nd.random.uniform(0, dlen, (R, 2), ctx=ctx, dtype=dtype)
wh = mx.nd.random.uniform(0, dlen, (R, 2), ctx=ctx, dtype=dtype)
batch_ind = mx.nd.array(np.random.randint(0, N, size=(R, 1)), ctx=ctx)
pos = mx.nd.concat(center_xy - wh / 2, center_xy + wh / 2, dim=1)
rois = mx.nd.concat(batch_ind, pos, dim=1)

data.attach_grad()
rois.attach_grad()
with mx.autograd.record():
output = mx.nd.contrib.ROIAlign(data, rois, pooled_size=pooled_size,
spatial_scale=spatial_scale, sample_ratio=sampling_ratio,
position_sensitive=position_sensitive)
spatial_scale=spatial_scale, sample_ratio=sampling_ratio,
position_sensitive=position_sensitive)
C_out = C // pooled_size[0] // pooled_size[1] if position_sensitive else C
dy = mx.nd.random.uniform(-1, 1, (R, C_out) + pooled_size, ctx=ctx, dtype = dtype)
dy = mx.nd.random.uniform(-1, 1, (R, C_out) +
pooled_size, ctx=ctx, dtype=dtype)
output.backward(dy)
real_output, [dx, drois] = roialign_forward_backward(data.asnumpy(), rois.asnumpy(), pooled_size,
spatial_scale, sampling_ratio,
position_sensitive, dy.asnumpy())
assert np.allclose(output.asnumpy(), real_output)
# It seems that the precision between Cfloat and Pyfloat is different.
assert np.allclose(data.grad.asnumpy(), dx, atol = 1e-5), np.abs(data.grad.asnumpy() - dx).max()
assert np.allclose(rois.grad.asnumpy(), drois)

assert_almost_equal(output.asnumpy(), real_output, atol=1e-3)
assert_almost_equal(data.grad.asnumpy(), dx, atol=1e-3)
assert_almost_equal(rois.grad.asnumpy(), drois, atol=1e-3)

# modified from test_roipooling()
def test_roi_align_autograd(sampling_ratio=0):
Expand All @@ -6996,17 +7007,18 @@ def test_roi_align_autograd(sampling_ratio=0):
[1, 3.1, 1.1, 5.2, 10.2]], dtype='float64')

check_numeric_gradient(sym=test, location=[x1, x2],
grad_nodes={'data':'write', 'rois':'null'},
grad_nodes={'data': 'write', 'rois': 'null'},
numeric_eps=1e-4, rtol=1e-1, atol=1e-4, ctx=ctx)
check_numeric_gradient(sym=test, location=[x1, x2],
grad_nodes={'data':'add', 'rois':'null'},
grad_nodes={'data': 'add', 'rois': 'null'},
numeric_eps=1e-4, rtol=1e-1, atol=1e-4, ctx=ctx)

test_roi_align_value()
test_roi_align_value(sampling_ratio=2)
test_roi_align_value(position_sensitive=True)
test_roi_align_autograd()


@with_seed()
def test_diag():

Expand Down