Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Add reshape op supported by MKL-DNN #12980

Merged
merged 13 commits into from
Dec 13, 2018
Merged
Show file tree
Hide file tree
Changes from 11 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 68 additions & 10 deletions src/operator/tensor/matrix_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -103,6 +103,57 @@ DMLC_REGISTER_PARAMETER(StackParam);
DMLC_REGISTER_PARAMETER(SqueezeParam);
DMLC_REGISTER_PARAMETER(DepthToSpaceParam);

#if MXNET_USE_MKLDNN == 1
void MKLDNNReshape(const NDArray &in_data, const NDArray &out_data) {
MSHADOW_TYPE_SWITCH(in_data.dtype(), DType, {
auto this_mem = in_data.GetMKLDNNData();
auto out_dptr = out_data.data().dptr<DType>();
mkldnn::memory::primitive_desc this_pd = this_mem->get_primitive_desc();
mkldnn::memory::desc this_desc = this_pd.desc();
mkldnn::memory::dims dims(this_desc.data.dims,
this_desc.data.dims + this_desc.data.ndims);
auto this_dtype = static_cast<mkldnn::memory::data_type>(this_desc.data.data_type);
auto this_format = static_cast<mkldnn::memory::format>(GetDefaultFormat(this_desc));
mkldnn::memory::desc data_md(dims, this_dtype, this_format);
mkldnn::memory::primitive_desc pd(data_md, this_pd.get_engine());
auto temp_mem = mkldnn::memory(pd, out_dptr);
MKLDNNStream::Get()->RegisterPrim(mkldnn::reorder(*this_mem, temp_mem));
MKLDNNStream::Get()->Submit();

// Removing out_data mkl_mem_ and store data in the default format
const_cast<NDArray &>(out_data).InvalidateMKLDNNData();
});
}

static void ReshapeComputeExCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs) {
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
// If inputs are supposed to be in MKLDNN format and
// MKLDNNsupport the data type or the shape. Then convert
// it to the output format and shape
if (SupportMKLDNNArray(inputs[0].dtype(), inputs[0].shape()) && req[0] != kAddTo) {
MKLDNNReshape(inputs[0], outputs[0]);
return;
}
FallBackCompute(UnaryOp::IdentityCompute<cpu>, attrs, ctx, inputs, req, outputs);
}

inline static bool ReshapeStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);
return MKLDNNStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs,
out_attrs);
}
#endif

NNVM_REGISTER_OP(Reshape)
.add_alias("reshape")
.describe(R"code(Reshapes the input array.
Expand Down Expand Up @@ -171,9 +222,19 @@ If the argument `reverse` is set to 1, then the special values are inferred from
.set_num_outputs(1)
.set_attr_parser(ParamParser<ReshapeParam>)
.set_attr<nnvm::FInferShape>("FInferShape", ReshapeShape)
#if MXNET_USE_MKLDNN == 1
.set_attr<FInferStorageType>("FInferStorageType", ReshapeStorageType)
#endif
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_copy"})
.set_attr<FCompute>("FCompute<cpu>", UnaryOp::IdentityCompute<cpu>)
#if MXNET_USE_MKLDNN == 1
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I know that this is not the first op which is implemented this way, but is there a reason for the two different if blocks here ?

Copy link
Contributor Author

@huangzhiyuan huangzhiyuan Dec 11, 2018

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nothing different, it has been merged into one block here. Thanks for your review! :)

.set_attr<bool>("TIsMKLDNN", true)
.set_attr<FComputeEx>("FComputeEx<cpu>", ReshapeComputeExCPU)
.set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
#else
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 0}};
Expand All @@ -182,6 +243,7 @@ If the argument `reverse` is set to 1, then the special values are inferred from
[](const NodeAttrs& attrs){
return std::vector<bool>{true};
})
#endif
.add_argument("data", "NDArray-or-Symbol", "Input data to reshape.")
.add_arguments(ReshapeParam::__FIELDS__());

Expand Down Expand Up @@ -210,24 +272,18 @@ static void FlattenEx(const nnvm::NodeAttrs& attrs,
#endif
}

#if MXNET_USE_MKLDNN == 1
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Seems this will change the original behavior when MKL-DNN is not enabled. FlattenStorageType is not defined then.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is followed new style with other mkldnn op, that is, defining InferStorageType function within MKLDNN macro. Most other ops are refactored into this style by Luobao, I guess this one is missing.

static inline bool FlattenStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 1);
CHECK_EQ(out_attrs->size(), 1);
bool ret = ElemwiseStorageType<1, 1, false, false, false>(attrs, dev_mask, dispatch_mode,
in_attrs, out_attrs);
#if MXNET_USE_MKLDNN == 1
if (dev_mask == mshadow::cpu::kDevMask
&& in_attrs->at(0) == kDefaultStorage
&& out_attrs->at(0) == kDefaultStorage) {
*dispatch_mode = DispatchMode::kFComputeEx;
}
#endif
return ret;
return MKLDNNStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs,
out_attrs);
}
#endif

NNVM_REGISTER_OP(Flatten)
.add_alias("flatten")
Expand Down Expand Up @@ -261,7 +317,9 @@ Example::
.set_num_outputs(1)
.set_attr<nnvm::FInferShape>("FInferShape", FlattenShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
#if MXNET_USE_MKLDNN == 1
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If MKLDNN supports this op, please add .set_attr<bool>("TIsMKLDNN", true) for it.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This attribute is in Line 327.

.set_attr<FInferStorageType>("FInferStorageType", FlattenStorageType)
#endif
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{ "_backward_copy" })
.set_attr<FCompute>("FCompute<cpu>", UnaryOp::IdentityCompute<cpu>)
.set_attr<FComputeEx>("FComputeEx<cpu>", FlattenEx)
Expand Down
31 changes: 31 additions & 0 deletions tests/python/mkl/test_mkldnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,37 @@ def __getitem__(self, key):
assert_almost_equal(y[0, 0, 0, 0], 0.016711406)
break

@with_seed()
def test_mkldnn_reshape():
def test_reshape_after_conv(dst_shape):
shape = (1,1,4,4)
data = mx.symbol.Variable('data')
conv = mx.symbol.Convolution(data=data, num_filter=16, kernel=(1, 1), pad=(0, 0), stride=(1, 1))
res = mx.symbol.reshape(data=conv, shape=dst_shape)
exe = res.simple_bind(mx.cpu(), data=shape, grad_req='null')

val1 = np.random.uniform(-1, 1, (4, 4))
val2 = np.random.uniform(-1, 1, (1, 1, 1, 1))
val3 = np.random.uniform(-1 ,1, (1))

exe.arg_arrays[0][:] = val1
exe.arg_arrays[1][:] = val2
exe.arg_arrays[2][:] = val3
outputs = exe.forward(is_train=False)[0].asnumpy()

conv_exe = conv.simple_bind(mx.cpu(), data=shape, grad_req='null')
conv_exe.arg_arrays[0][:] = val1
conv_exe.arg_arrays[1][:] = val2
conv_exe.arg_arrays[2][:] = val3
data_npy = conv_exe.forward(is_train=False)[0].asnumpy()
assert_almost_equal(outputs, data_npy.reshape(dst_shape))


# Test mkldnn reshape (Using shape)
test_cases = [(256), (16, 16), (4, 4, 16), (4, 4, 4, 4)]
for test_case in test_cases:
test_reshape_after_conv(test_case)


@with_seed()
def test_reshape_before_conv():
Expand Down