-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Added the diag() operator #11643
Added the diag() operator #11643
Changes from 20 commits
157e3fe
82ff682
182f11b
0581d45
eb5f17a
cb89c76
95b5560
a291e81
bb4c8d1
7131e72
ac7feba
0b0fe12
57b9345
6b99f45
a613f49
869e198
d02e221
17cdcf9
fc2a2ca
702b416
7fd3b8c
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -1302,6 +1302,14 @@ def flip(self, *args, **kwargs): | |
""" | ||
return op.flip(self, *args, **kwargs) | ||
|
||
def diag(self, k=0, **kwargs): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please also update /~https://github.com/apache/incubator-mxnet/blob/master/docs/api/python/ndarray/ndarray.md and symbol/symbol.md (probably add it to the section of array creation routines like https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html) There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Agree. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Good point, added it. |
||
"""Convenience fluent method for :py:func:`diag`. | ||
|
||
The arguments are the same as for :py:func:`diag`, with | ||
this array as data. | ||
""" | ||
return op.diag(self, k, **kwargs) | ||
|
||
def sum(self, *args, **kwargs): | ||
"""Convenience fluent method for :py:func:`sum`. | ||
|
||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,217 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2015 by Contributors | ||
* \file diag_op-inl.h | ||
* \brief CPU Implementation of the diag op | ||
* \author Istvan Fehervari | ||
*/ | ||
|
||
#ifndef MXNET_OPERATOR_TENSOR_DIAG_OP_INL_H_ | ||
#define MXNET_OPERATOR_TENSOR_DIAG_OP_INL_H_ | ||
|
||
#include <dmlc/parameter.h> | ||
#include <vector> | ||
#include <algorithm> | ||
#include "../mxnet_op.h" | ||
#include "../operator_common.h" | ||
#include "../elemwise_op_common.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
struct DiagParam : public dmlc::Parameter<DiagParam> { | ||
dmlc::optional<int> k; | ||
DMLC_DECLARE_PARAMETER(DiagParam) { | ||
DMLC_DECLARE_FIELD(k) | ||
.set_default(dmlc::optional<int>(0)) | ||
.describe("Diagonal in question. The default is 0. " | ||
"Use k>0 for diagonals above the main diagonal, " | ||
"and k<0 for diagonals below the main diagonal. " | ||
"If input has shape (S0 S1) k must be between -S0 and S1"); | ||
} | ||
}; | ||
|
||
inline TShape DiagShapeImpl(const TShape& ishape, const nnvm::dim_t k) { | ||
if (ishape.ndim() == 1) { | ||
auto s = ishape[0] + std::abs(k); | ||
return TShape({s, s}); | ||
} | ||
|
||
auto h = ishape[0]; | ||
auto w = ishape[1]; | ||
|
||
if (k > 0) { | ||
w -= k; | ||
} else if (k < 0) { | ||
h += k; | ||
} | ||
|
||
auto s = std::min(h, w); | ||
if (s < 0) { | ||
s = 0; | ||
} | ||
|
||
return TShape({s}); | ||
} | ||
|
||
inline bool DiagOpShape(const nnvm::NodeAttrs& attrs, | ||
std::vector<TShape>* in_attrs, | ||
std::vector<TShape>* out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
|
||
const TShape& ishape = (*in_attrs)[0]; | ||
if (ishape.ndim() == 0) return false; | ||
if (ishape.ndim() > 2) LOG(FATAL) << "Input must be 1- or 2-d."; | ||
|
||
const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed); | ||
|
||
TShape oshape = DiagShapeImpl(ishape, param.k.value()); | ||
if (shape_is_none(oshape)) { | ||
LOG(FATAL) << "Diagonal does not exist."; | ||
} | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape); | ||
|
||
return out_attrs->at(0).ndim() != 0U; | ||
} | ||
|
||
inline bool DiagOpType(const nnvm::NodeAttrs& attrs, | ||
std::vector<int> *in_attrs, | ||
std::vector<int> *out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
|
||
TYPE_ASSIGN_CHECK(*out_attrs, 0, (*in_attrs)[0]); | ||
TYPE_ASSIGN_CHECK(*in_attrs, 0, (*out_attrs)[0]); | ||
return (*out_attrs)[0] != -1; | ||
} | ||
|
||
template<int req> | ||
struct diag { | ||
template<typename DType> | ||
MSHADOW_XINLINE static void Map(int i, DType* out, const DType* a, | ||
mshadow::Shape<2> ishape, int k) { | ||
using namespace mxnet_op; | ||
int j = 0; | ||
if (k > 0) { | ||
j = ravel(mshadow::Shape2(i, i + k), ishape); | ||
} else if (k < 0) { | ||
j = ravel(mshadow::Shape2(i - k, i), ishape); | ||
} else { | ||
j = ravel(mshadow::Shape2(i, i), ishape); | ||
} | ||
|
||
KERNEL_ASSIGN(out[i], req, a[j]); | ||
} | ||
}; | ||
|
||
template<int req> | ||
struct diag_gen { | ||
template<typename DType> | ||
MSHADOW_XINLINE static void Map(int i, DType* out, const DType* a, | ||
mshadow::Shape<2> oshape, int k) { | ||
using namespace mxnet_op; | ||
|
||
auto j = unravel(i, oshape); | ||
if (j[1] == (j[0] + k)) { | ||
auto l = j[0] < j[1] ? j[0] : j[1]; | ||
KERNEL_ASSIGN(out[i], req, a[l]); | ||
} else { | ||
KERNEL_ASSIGN(out[i], req, static_cast<DType>(0)); | ||
} | ||
} | ||
}; | ||
|
||
template<typename xpu> | ||
void DiagOpForward(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
using namespace mxnet_op; | ||
using namespace mshadow; | ||
CHECK_EQ(inputs.size(), 1U); | ||
CHECK_EQ(outputs.size(), 1U); | ||
CHECK_EQ(req.size(), 1U); | ||
CHECK_EQ(req[0], kWriteTo); | ||
Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
const TBlob& in_data = inputs[0]; | ||
const TBlob& out_data = outputs[0]; | ||
const TShape& ishape = inputs[0].shape_; | ||
const TShape& oshape = outputs[0].shape_; | ||
const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed); | ||
|
||
if (ishape.ndim() == 2) { | ||
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { | ||
Kernel<diag<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(), | ||
in_data.dptr<DType>(), Shape2(ishape[0], ishape[1]), param.k.value()); | ||
}); | ||
}); | ||
} else { | ||
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { | ||
Kernel<diag_gen<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(), | ||
in_data.dptr<DType>(), Shape2(oshape[0], oshape[1]), param.k.value()); | ||
}); | ||
}); | ||
} | ||
} | ||
|
||
template<typename xpu> | ||
void DiagOpBackward(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
using namespace mxnet_op; | ||
using namespace mshadow; | ||
CHECK_EQ(inputs.size(), 1U); | ||
CHECK_EQ(outputs.size(), 1U); | ||
Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
|
||
const TBlob& in_data = inputs[0]; | ||
const TBlob& out_data = outputs[0]; | ||
const TShape& ishape = inputs[0].shape_; | ||
const TShape& oshape = outputs[0].shape_; | ||
const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed); | ||
|
||
if (oshape.ndim() == 2) { | ||
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { | ||
Kernel<diag_gen<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(), | ||
in_data.dptr<DType>(), Shape2(oshape[0], oshape[1]), param.k.value()); | ||
}); | ||
}); | ||
} else { | ||
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { | ||
Kernel<diag<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(), | ||
in_data.dptr<DType>(), Shape2(ishape[0], ishape[1]), param.k.value()); | ||
}); | ||
}); | ||
} | ||
} | ||
|
||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_OPERATOR_TENSOR_DIAG_OP_INL_H_ |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2015 by Contributors | ||
* \file diag_op.cc | ||
* \brief | ||
* \author Istvan Fehervari | ||
*/ | ||
|
||
#include "./diag_op-inl.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
DMLC_REGISTER_PARAMETER(DiagParam); | ||
|
||
NNVM_REGISTER_OP(diag) | ||
.describe(R"code(Extracts a diagonal or constructs a diagonal array. | ||
|
||
``diag``'s behavior depends on the input array dimensions: | ||
|
||
- 1-D arrays: constructs a 2-D array with the input as its diagonal, all other elements are zero | ||
- 2-D arrays: returns elements in the diagonal as a new 1-D array | ||
- N-D arrays: not supported yet | ||
|
||
Examples:: | ||
|
||
x = [[1, 2, 3], | ||
[4, 5, 6]] | ||
|
||
diag(x) = [1, 5] | ||
|
||
diag(x, k=1) = [2, 6] | ||
|
||
diag(x, k=-1) = [4] | ||
|
||
x = [1, 2, 3] | ||
|
||
diag(x) = [[1, 0, 0], | ||
[0, 2, 0], | ||
[0, 0, 3]] | ||
|
||
diag(x, k=1) = [[0, 1, 0], | ||
[0, 0, 2], | ||
[0, 0, 0]] | ||
|
||
diag(x, k=-1) = [[0, 0, 0], | ||
[1, 0, 0], | ||
[0, 2, 0]] | ||
|
||
)code" ADD_FILELINE) | ||
.set_attr_parser(ParamParser<DiagParam>) | ||
.set_num_inputs(1) | ||
.set_num_outputs(1) | ||
.set_attr<nnvm::FListInputNames>("FListInputNames", | ||
[](const NodeAttrs& attrs) { | ||
return std::vector<std::string>{"data"}; | ||
}) | ||
.set_attr<nnvm::FInferShape>("FInferShape", DiagOpShape) | ||
.set_attr<nnvm::FInferType>("FInferType", DiagOpType) | ||
.set_attr<FCompute>("FCompute<cpu>", DiagOpForward<cpu>) | ||
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_diag"}) | ||
.add_argument("data", "NDArray-or-Symbol", "Input ndarray") | ||
.add_arguments(DiagParam::__FIELDS__()); | ||
|
||
|
||
NNVM_REGISTER_OP(_backward_diag) | ||
.set_attr_parser(ParamParser<DiagParam>) | ||
.set_num_inputs(1) | ||
.set_num_outputs(1) | ||
.set_attr<nnvm::TIsBackward>("TIsBackward", true) | ||
.set_attr<FCompute>("FCompute<cpu>", DiagOpBackward<cpu>); | ||
|
||
|
||
} // namespace op | ||
} // namespace mxnet |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2015 by Contributors | ||
* \file diag_op.cu | ||
* \brief GPU Implementation of the diag op | ||
* \author Istvan Fehervari | ||
*/ | ||
|
||
#include "./diag_op-inl.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
NNVM_REGISTER_OP(diag) | ||
.set_attr<FCompute>("FCompute<gpu>", DiagOpForward<gpu>); | ||
|
||
NNVM_REGISTER_OP(_backward_diag) | ||
.set_attr<FCompute>("FCompute<gpu>", DiagOpBackward<gpu>); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sorry I didn't make it clear - there're two places to add per file. For
ndarray.md
, One is NDArray.diag (fluent method) and the other is (ndarray.)diag at line 360.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done