Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
address review comments
Browse files Browse the repository at this point in the history
  • Loading branch information
roywei committed Dec 18, 2018
1 parent e987fdd commit ee7df70
Showing 1 changed file with 19 additions and 19 deletions.
38 changes: 19 additions & 19 deletions docs/tutorials/gluon/hybrid.md
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ net2 = gluon.SymbolBlock.imports('model-symbol.json', ['data'], 'model-0001.para

## Operators that does not work with hybridize

While most APIs are the same in NDArray and Symbol, there are some differences. Writting `F.operator` and call `hybridize` may not work all the time.
If you want to hybridize your model, you must use `F.some_operator` in your 'hybrid_forward' function, F will be 'mxnet.nd' before you hybridize and 'mxnet.sym' after hybridize. While most APIs are the same in NDArray and Symbol, there are some differences. Writing `F.some_operator` and call `hybridize` may not work all the time.
Here we list all the APIs that do not work and provide you the work arounds.

### Element-wise Operators
Expand All @@ -150,17 +150,17 @@ However, that's not the case in Symbol API, it's not automatically broadcasted a

| NDArray APIs | Description |
|---|---|
| [*NDArray.__add__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__add__) | x.__add__(y) <=> x+y <=> mx.nd.add(x, y) |
| [*NDArray.__sub__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__sub__) | x.__sub__(y) <=> x-y <=> mx.nd.subtract(x, y) |
| [*NDArray.__mul__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__mul__) | x.__mul__(y) <=> x*y <=> mx.nd.multiply(x, y) |
| [*NDArray.__div__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__div__) | x.__div__(y) <=> x/y <=> mx.nd.divide(x, y) |
| [*NDArray.__mod__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__mod__) | x.__mod__(y) <=> x%y <=> mx.nd.modulo(x, y) |
| [*NDArray.__lt__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__lt__) | x.__lt__(y) <=> x mx.nd.lesser(x, y) |
| [*NDArray.__le__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__le__) | x.__le__(y) <=> x<=y <=> mx.nd.less_equal(x, y) |
| [*NDArray.__gt__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__gt__) | x.__gt__(y) <=> x>y <=> mx.nd.greater(x, y) |
| [*NDArray.__ge__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__ge__) | x.__ge__(y) <=> x>=y <=> mx.nd.greater_equal(x, y)|
| [*NDArray.__eq__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__eq__) | x.__eq__(y) <=> x==y <=> mx.nd.equal(x, y) |
| [*NDArray.__ne__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__ne__) | x.__ne__(y) <=> x!=y <=> mx.nd.not_equal(x, y) |
| [*NDArray.\__add\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__add__) | x.\__add\__(y) <=> x+y <=> mx.nd.add(x, y) |
| [*NDArray.\__sub\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__sub__) | x.\__sub\__(y) <=> x-y <=> mx.nd.subtract(x, y) |
| [*NDArray.\__mul\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__mul__) | x.\__mul\__(y) <=> x*y <=> mx.nd.multiply(x, y) |
| [*NDArray.\__div\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__div__) | x.\__div\__(y) <=> x/y <=> mx.nd.divide(x, y) |
| [*NDArray.\__mod\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__mod__) | x.\__mod\__(y) <=> x%y <=> mx.nd.modulo(x, y) |
| [*NDArray.\__lt\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__lt__) | x.\__lt\__(y) <=> x mx.nd.lesser(x, y) |
| [*NDArray.\__le\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__le__) | x.\__le\__(y) <=> x<=y <=> mx.nd.less_equal(x, y) |
| [*NDArray.\__gt\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__gt__) | x.\__gt\__(y) <=> x>y <=> mx.nd.greater(x, y) |
| [*NDArray.\__ge\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__ge__) | x.\__ge\__(y) <=> x>=y <=> mx.nd.greater_equal(x, y)|
| [*NDArray.\__eq\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__eq__) | x.\__eq\__(y) <=> x==y <=> mx.nd.equal(x, y) |
| [*NDArray.\__ne\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__ne__) | x.\__ne\__(y) <=> x!=y <=> mx.nd.not_equal(x, y) |

The current workaround is to use corecponding broadcast operators for arithmetic and comparison to avoid potential hybridization failure when input shapes are different.

Expand All @@ -178,11 +178,11 @@ The current workaround is to use corecponding broadcast operators for arithmetic
|[*broadcast_lesser*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_lesser) | Returns the result of element-wise *lesser than* (<) comparison operation with broadcasting. |
|[*broadcast_lesser_equal*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_lesser_equal) | Returns the result of element-wise *lesser than or equal to* (<=) comparison operation with broadcasting. |

For example, if you wan to add a NDarray to your input x, use `broadcast_add` instead of `+`:
For example, if you want to add a NDarray to your input x, use `broadcast_add` instead of `+`:

```python
def hybrid_forward(self, F, x):
# avoid writting: return x + F.ones((1, 1))
# avoid writing: return x + F.ones((1, 1))
return F.broadcast_add(x, F.ones((1, 1)))
```

Expand All @@ -195,15 +195,15 @@ AttributeError: 'Symbol' object has no attribute 'shape'
```

### Slice
[] in NDArray is to get a slice from the array. [] in Symbol is to get an output from a grouped symbol.
`[]` in NDArray is used to get a slice from the array. However, `[]` in Symbol is used to get an output from a grouped symbol.
For example, you will get different result for the following method before and after hybridization.

```python
def hybrid_forward(self, F, x):
return x[0]
```

The current workaround is explicitly call [`slice`](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.slice) operators in `hybrid_forwar`d.
The current workaround is to explicitly call [`slice`](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.slice) operators in `hybrid_forward`.


### Not implemented operators
Expand All @@ -212,12 +212,12 @@ Some of the often used operators in NDArray are not implemented in Symbol, and

#### Array API

mx.nd.array() is used a lot but Symbol does not have the array API. The current workaround is to use F.ones/ F.zeros/ F.full which exists in both NDArrays and Symbols.
`mx.nd.array()` is used a lot but Symbol does not have the array API. The current workaround is to use F.ones/ F.zeros/ F.full which exists in both NDArrays and Symbols.

#### In-Place Arithmetic Operators

In place arithmetic operators are also used a lot in Gluon imperative mode. You need to avoid that and write the operations explicitly in `hybrid_forward`.
For example, avoid `x += y` and use `x = x + y`, other wise you will get `NotImplementedError`.
In-place arithmetic operators are also used a lot in Gluon imperative mode. You need to avoid that and write the operations explicitly in `hybrid_forward`.
For example, avoid `x += y` and use `x = x + y`, otherwise you will get `NotImplementedError`.

| NDArray in-place arithmetic operators | Description |
|---|---|
Expand Down

0 comments on commit ee7df70

Please sign in to comment.