Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
addressing comments
Browse files Browse the repository at this point in the history
  • Loading branch information
Roshrini committed Feb 18, 2019
1 parent 4598f44 commit e6e74ee
Show file tree
Hide file tree
Showing 2 changed files with 21 additions and 51 deletions.
54 changes: 4 additions & 50 deletions python/mxnet/contrib/onnx/onnx2mx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,68 +62,22 @@ def sample_multinomial(attrs, inputs, proto_obj):
new_attrs['dtype'] = TENSOR_TYPE_TO_NP_TYPE[int(attrs.get('dtype', 6))]
return 'sample_multinomial', new_attrs, inputs


# Arithmetic Operations
def add(attrs, inputs, proto_obj):
"""Adding two tensors"""
new_attr = {}
op_names = ['batchnorm, convolution, deconvolution']
if 'broadcast' in attrs and attrs['broadcast'] == 1:
broadcast_axis = attrs['axis']
for op_name in op_names:
if inputs[0].name.startswith(op_name):
op_value = translation_utils._fix_broadcast('broadcast_add', inputs,
broadcast_axis, proto_obj)
return op_value, new_attr, inputs
else:
return 'broadcast_add', attrs, inputs
return 'broadcast_add', new_attr, inputs
return translation_utils.broadcast_arithmetic_helper(attrs, inputs, proto_obj, 'broadcast_add')

def subtract(attrs, inputs, proto_obj):
"""Subtracting two tensors"""
new_attr = {}
op_names = ['batchnorm, convolution, deconvolution']
if 'broadcast' in attrs and attrs['broadcast'] == 1:
broadcast_axis = attrs['axis']
for op_name in op_names:
if inputs[0].name.startswith(op_name):
op_value = translation_utils._fix_broadcast('broadcast_sub', inputs,
broadcast_axis, proto_obj)
return op_value, new_attr, inputs
else:
return 'broadcast_sub', attrs, inputs
return 'broadcast_sub', new_attr, inputs

return translation_utils.broadcast_arithmetic_helper(attrs, inputs, proto_obj, 'broadcast_sub')

def multiply(attrs, inputs, proto_obj):
"""Multiply two tensors"""
new_attr = {}
op_names = ['batchnorm, convolution, deconvolution']
if 'broadcast' in attrs and attrs['broadcast'] == 1:
broadcast_axis = attrs['axis']
for op_name in op_names:
if inputs[0].name.startswith(op_name):
op_value = translation_utils._fix_broadcast('broadcast_mul', inputs,
broadcast_axis, proto_obj)
return op_value, new_attr, inputs
else:
return 'broadcast_mul', attrs, inputs
return 'broadcast_mul', new_attr, inputs
return translation_utils.broadcast_arithmetic_helper(attrs, inputs, proto_obj, 'broadcast_mul')

def divide(attrs, inputs, proto_obj):
"""Divide two tensors"""
new_attr = {}
op_names = ['batchnorm, convolution, deconvolution']
if 'broadcast' in attrs and attrs['broadcast'] == 1:
broadcast_axis = attrs['axis']
for op_name in op_names:
if inputs[0].name.startswith(op_name):
op_value = translation_utils._fix_broadcast('broadcast_div', inputs,
broadcast_axis, proto_obj)
return op_value, new_attr, inputs
else:
return 'broadcast_div', attrs, inputs
return 'broadcast_div', new_attr, inputs
return translation_utils.broadcast_arithmetic_helper(attrs, inputs, proto_obj, 'broadcast_div')

def mean(attrs, inputs, proto_obj):
"""Mean of all the input tensors."""
Expand Down
18 changes: 17 additions & 1 deletion python/mxnet/contrib/onnx/onnx2mx/_translation_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,7 +221,7 @@ def get_input_shape(sym, proto_obj):
model_input_shape = [data[1] for data in proto_obj.model_metadata.get('input_tensor_data')]
data_names = [data[0] for data in proto_obj.model_metadata.get('input_tensor_data')]

#creating dummy inputs
# creating dummy inputs
inputs = []
for in_shape in model_input_shape:
inputs.append(nd.ones(shape=in_shape))
Expand All @@ -245,3 +245,19 @@ def get_input_shape(sym, proto_obj):
result = mod.get_outputs()[0].asnumpy()

return result.shape

def broadcast_arithmetic_helper(attrs, inputs, proto_obj, op_name):
"""Helper function for broadcast arithmetic ops."""
new_attr = {}
op_names = ['batchnorm, convolution, deconvolution']
if 'broadcast' in attrs and attrs['broadcast'] == 1:
broadcast_axis = attrs['axis']
for op_name in op_names:
# if input is bias which comes after conv, deconv, batchnorm operators
# then only reshape bias term
if inputs[0].name.startswith(op_name):
op_value = _fix_broadcast(op_name, inputs, broadcast_axis, proto_obj)
return op_value, new_attr, inputs
else:
return op_name, attrs, inputs
return op_name, new_attr, inputs

0 comments on commit e6e74ee

Please sign in to comment.