Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
add env var to control accumulation option
Browse files Browse the repository at this point in the history
  • Loading branch information
haojin2 committed May 9, 2019
1 parent 13f81a0 commit e517a36
Show file tree
Hide file tree
Showing 3 changed files with 64 additions and 40 deletions.
7 changes: 7 additions & 0 deletions docs/faq/env_var.md
Original file line number Diff line number Diff line change
Expand Up @@ -280,6 +280,13 @@ When USE_PROFILER is enabled in Makefile or CMake, the following environments ca
- Values: Int ```(default=4)```
- This variable controls how many CuDNN dropout state resources to create for each GPU context for use in operator.

* MXNET_SAFE_ACCUMULATION
- Values: Values: 0(false) or 1(true) ```(default=0)```
- If this variable is set, the accumulation will enter the safe mode, meaning accumulation is done in a data type of higher precision than
the input data type, leading to more accurate results with a possible performance loss and backward compatibility loss.
For example, when the variable is set to 1(true), if the input data type is float16, then the accumulation will be done
with float32.

Settings for Minimum Memory Usage
---------------------------------
- Make sure ```min(MXNET_EXEC_NUM_TEMP, MXNET_GPU_WORKER_NTHREADS) = 1```
Expand Down
15 changes: 13 additions & 2 deletions src/operator/tensor/broadcast_reduce_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -1183,12 +1183,23 @@ void LpNormCompute(const nnvm::NodeAttrs& attrs,
} else {
small = ReduceAxesShapeImpl(inputs[0].shape_, param.axis, true, false);
}

if (param.ord == 1) {
ReduceAxesComputeImpl<xpu, mshadow_op::sum, true, false, mshadow_op::abs>(
if (dmlc::GetEnv("MXNET_SAFE_ACCUMULATION", false)) {
ReduceAxesComputeImpl<xpu, mshadow_op::sum, true, false, mshadow_op::abs>(
ctx, inputs, req, outputs, small);
} else {
ReduceAxesComputeImpl<xpu, mshadow_op::sum, false, false, mshadow_op::abs>(
ctx, inputs, req, outputs, small);
}
} else if (param.ord == 2) {
ReduceAxesComputeImpl<xpu, mshadow_op::nrm2, true, false, mshadow_op::identity>(
if (dmlc::GetEnv("MXNET_SAFE_ACCUMULATION", false)) {
ReduceAxesComputeImpl<xpu, mshadow_op::nrm2, true, false, mshadow_op::identity>(
ctx, inputs, req, outputs, small);
} else {
ReduceAxesComputeImpl<xpu, mshadow_op::nrm2, false, false, mshadow_op::identity>(
ctx, inputs, req, outputs, small);
}
}
}

Expand Down
82 changes: 44 additions & 38 deletions tests/python/unittest/test_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -3482,51 +3482,57 @@ def l2norm(input_data, axis=0, keepdims=True):
epsilon = 1e-3
acc_type = {np.float16: np.float32, np.float32: np.float32, np.float64: np.float64,
np.int32: np.int32, np.int64: np.int64}
dtype_to_str = {np.float16: 'float16', np.float32: 'float32', np.float64: 'float64',
np.int32: 'int32', np.int64: 'int64'}
is_windows = sys.platform.startswith('win')
for order in [1, 2]:
for dtype in [np.float16, np.float32, np.float64, np.int32, np.int64]:
for i in range(in_data_dim):
for out_dtype in ['float32', 'float64', 'int32', 'int64']:
if (dtype == np.int32 or dtype == np.int64) and ('int' not in out_dtype or is_windows):
continue
if dtype != np.int32 and dtype != np.int64 and 'int' in out_dtype:
continue
backward_dtype = np.float32 if out_dtype == 'float32' else np.float64
skip_backward = 'int' in out_dtype
print(order, dtype, i, out_dtype, in_shape)
in_data = np.random.uniform(-1, 1, in_shape).astype(acc_type[dtype])
in_data[abs(in_data) < epsilon] = 2 * epsilon
norm_sym = mx.symbol.norm(data=data, ord=order, axis=i, out_dtype=out_dtype, keepdims=True)
npy_out = l1norm(in_data, i) if order is 1 else l2norm(in_data, i)
npy_out_backward = np.sign(in_data) if order is 1 else in_data/npy_out
check_symbolic_forward(norm_sym, [in_data.astype(dtype)], [npy_out.astype(out_dtype)],
rtol=1e-3, atol=1e-5, ctx=ctx)
if not skip_backward:
check_symbolic_backward(norm_sym, [in_data.astype(dtype)],
[np.ones(npy_out.shape).astype(out_dtype)],
[npy_out_backward], rtol=1e-3, atol=1e-5, ctx=ctx,
dtype=backward_dtype)
# Disable numeric gradient /~https://github.com/apache/incubator-mxnet/issues/11509
# check gradient
if dtype is not np.float16 and not skip_backward:
check_numeric_gradient(norm_sym, [in_data], numeric_eps=epsilon,
rtol=1e-1, atol=1e-3, dtype=backward_dtype)
if i < in_data_dim-1:
norm_sym = mx.symbol.norm(data=data, ord=order, axis=(i, i+1), keepdims=True)
npy_out = l1norm(in_data, (i, i+1)) if order is 1 else l2norm(in_data, (i, i+1))
for enforce_safe_acc in ["1", "0"]:
os.environ["MXNET_ENFORCE_SAFE_ACCUMULATION"] = enforce_safe_acc
for order in [1, 2]:
for dtype in [np.float16, np.float32, np.float64]:
for i in range(in_data_dim):
for out_dtype in ['float32', 'float64']:
backward_dtype = np.float32 if out_dtype == 'float32' else np.float64
accumulation_type = acc_type[dtype]
if enforce_safe_acc == "0":
backward_dtype = dtype
out_dtype = dtype_to_str[dtype]
accumulation_type = dtype
print(dtype, out_dtype, accumulation_type)
skip_backward = 'int' in out_dtype
in_data = np.random.uniform(-1, 1, in_shape).astype(accumulation_type)
in_data[abs(in_data) < epsilon] = 2 * epsilon
norm_sym = mx.symbol.norm(data=data, ord=order, axis=i, out_dtype=out_dtype, keepdims=True)
npy_out = l1norm(in_data, i) if order is 1 else l2norm(in_data, i)
npy_out_backward = np.sign(in_data) if order is 1 else in_data/npy_out
check_symbolic_forward(norm_sym, [in_data], [npy_out.astype(dtype)],
rtol=1e-3 if dtype is np.float16 else 1e-3,
atol=1e-5 if dtype is np.float16 else 1e-5, ctx=ctx)
if not skip_backward:
check_symbolic_backward(norm_sym, [in_data],
check_symbolic_forward(norm_sym, [in_data.astype(dtype)], [npy_out.astype(out_dtype)],
rtol=1e-2 if dtype == np.float16 else 1e-3,
atol=1e-4 if dtype == np.float16 else 1e-5, ctx=ctx, dtype=dtype)
if dtype is not np.float16 and not skip_backward:
check_symbolic_backward(norm_sym, [in_data.astype(dtype)],
[np.ones(npy_out.shape).astype(out_dtype)],
[npy_out_backward.astype(out_dtype)],
rtol=1e-3, atol=1e-5, ctx=ctx, dtype=backward_dtype)
[npy_out_backward], rtol=1e-3, atol=1e-5, ctx=ctx,
dtype=backward_dtype)
# Disable numeric gradient /~https://github.com/apache/incubator-mxnet/issues/11509
# check gradient
if dtype is not np.float16 and not skip_backward:
check_numeric_gradient(norm_sym, [in_data], numeric_eps=epsilon,
rtol=1e-1, atol=1e-3, dtype=backward_dtype)
if i < in_data_dim-1:
norm_sym = mx.symbol.norm(data=data, ord=order, axis=(i, i+1), keepdims=True)
npy_out = l1norm(in_data, (i, i+1)) if order is 1 else l2norm(in_data, (i, i+1))
npy_out_backward = np.sign(in_data) if order is 1 else in_data/npy_out
check_symbolic_forward(norm_sym, [in_data], [npy_out.astype(dtype)],
rtol=1e-2 if dtype is np.float16 else 1e-3,
atol=1e-4 if dtype is np.float16 else 1e-5, ctx=ctx)
if dtype is not np.float16 and not skip_backward:
check_symbolic_backward(norm_sym, [in_data],
[np.ones(npy_out.shape).astype(out_dtype)],
[npy_out_backward.astype(out_dtype)],
rtol=1e-3, atol=1e-5, ctx=ctx, dtype=backward_dtype)
# check gradient
if dtype is not np.float16 and not skip_backward:
check_numeric_gradient(norm_sym, [in_data], numeric_eps=epsilon,
rtol=1e-1, atol=1e-3, dtype=backward_dtype)


def test_layer_norm():
Expand Down

0 comments on commit e517a36

Please sign in to comment.