Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
speedup SequenceMask on GPU (#14445)
Browse files Browse the repository at this point in the history
  • Loading branch information
haojin2 authored and nswamy committed Apr 5, 2019
1 parent c4b8d30 commit db55051
Show file tree
Hide file tree
Showing 3 changed files with 140 additions and 62 deletions.
79 changes: 17 additions & 62 deletions src/operator/sequence_mask-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -65,70 +65,24 @@ struct SequenceMaskParam : public dmlc::Parameter<SequenceMaskParam> {
}
};

// (seqlen, batch, rest) case
template <int req>
struct SequenceMask0Kernel {
template <typename DType, typename IType>
MSHADOW_XINLINE static void Map(int b, DType *in, const IType *idx,
index_t max_s_len, index_t batch_size,
index_t restsize, DType value) {
const index_t seqpos = static_cast<int>(idx[b]);
#pragma unroll
for (index_t s = seqpos; s < max_s_len; ++s) {
index_t incr = (s * batch_size * restsize) + (b * restsize);
#pragma unroll
for (index_t r = 0; r < restsize; ++r)
KERNEL_ASSIGN(in[incr + r], req, value);
}
}
};

// (batch, seqlen, rest) case
template <int req>
struct SequenceMask1Kernel {
template <typename DType, typename IType>
MSHADOW_XINLINE static void Map(int b, DType *in, const IType *idx,
index_t max_s_len, index_t batch_size,
index_t restsize, DType value) {
const index_t seqpos = static_cast<int>(idx[b]);
#pragma unroll
for (index_t s = seqpos; s < max_s_len; ++s) {
index_t incr = (b * max_s_len * restsize) + (s * restsize);
#pragma unroll
for (index_t r = 0; r < restsize; ++r)
KERNEL_ASSIGN(in[incr + r], req, value);
}
}
};
template<typename DType, typename IType>
void SequenceMaskExec(const mshadow::Tensor<cpu, 3, DType> &data,
const mshadow::Tensor<cpu, 1, IType> &indices,
const OpReqType req, mshadow::Stream<cpu> *const s,
int axis, DType val);
#ifdef __CUDACC__
template<typename DType, typename IType>
void SequenceMaskExec(const mshadow::Tensor<gpu, 3, DType> &data,
const mshadow::Tensor<gpu, 1, IType> &indices,
const OpReqType req, mshadow::Stream<gpu> *const s,
int axis, DType val);
#endif

template <typename xpu, typename DType, typename IType>
class SequenceMaskOp : public Operator {
public:
explicit SequenceMaskOp(SequenceMaskParam p) { this->param_ = p; }

void sequence_mask(const mshadow::Tensor<xpu, 3, DType> &data,
const mshadow::Tensor<xpu, 1, IType> &indices,
const OpReqType req, mshadow::Stream<xpu> *const s,
DType val) {
using namespace mshadow;
using namespace mshadow::expr;

index_t batch = indices.size(0);
index_t max_seq_len = data.size(param_.axis);
index_t restsize = data.size(2);

MXNET_ASSIGN_REQ_SWITCH(req, req_type, {
if (param_.axis == 1)
mxnet_op::Kernel<SequenceMask1Kernel<req_type>, xpu>::Launch(
s, batch, data.dptr_, indices.dptr_, max_seq_len, batch, restsize,
val);
else
mxnet_op::Kernel<SequenceMask0Kernel<req_type>, xpu>::Launch(
s, batch, data.dptr_, indices.dptr_, max_seq_len, batch, restsize,
val);
});
}

virtual void Forward(const OpContext &ctx, const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
Expand All @@ -155,8 +109,8 @@ class SequenceMaskOp : public Operator {
if (param_.use_sequence_length) {
Tensor<xpu, 1, IType> indices =
in_data[seq_mask::kSequenceLength].get<xpu, 1, IType>(s);
sequence_mask(out, indices, req[seq_mask::kOut], s,
static_cast<DType>(param_.value));
SequenceMaskExec<DType, IType>(out, indices, req[seq_mask::kOut], s,
param_.axis, static_cast<DType>(param_.value));
}
}

Expand Down Expand Up @@ -198,11 +152,12 @@ class SequenceMaskOp : public Operator {
s3, s);
out_g_temp = F<mshadow_op::identity>(out_g);
out_g = out_g_temp;
sequence_mask(out_g, indices, kWriteInplace, s, DType(0.));
SequenceMaskExec<DType, IType>(out_g, indices, kWriteInplace, s, param_.axis, DType(0.));
Assign(data_g, kAddTo, F<mshadow_op::identity>(out_g));
} else {
Assign(data_g, req[seq_mask::kData], F<mshadow_op::identity>(out_g));
sequence_mask(data_g, indices, req[seq_mask::kData], s, DType(0.));
SequenceMaskExec<DType, IType>(
data_g, indices, req[seq_mask::kData], s, param_.axis, DType(0.));
}
}
}
Expand Down
64 changes: 64 additions & 0 deletions src/operator/sequence_mask.cc
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,70 @@

namespace mxnet {
namespace op {

// (seqlen, batch, rest) case
template <int req>
struct SequenceMask0CPUKernel {
template <typename DType, typename IType>
MSHADOW_XINLINE static void Map(int batch, DType *in, const IType *idx,
index_t max_s_len, index_t batch_size,
index_t restsize, DType value) {
const index_t seqpos = static_cast<int>(idx[batch]);
#pragma unroll
for (index_t s = seqpos; s < max_s_len; ++s) {
index_t incr = (s * batch_size * restsize) + (batch * restsize);
#pragma unroll
for (index_t r = 0; r < restsize; ++r)
KERNEL_ASSIGN(in[incr + r], req, value);
}
}
};

// (batch, seqlen, rest) case
template <int req>
struct SequenceMask1CPUKernel {
template <typename DType, typename IType>
MSHADOW_XINLINE static void Map(int batch, DType *in, const IType *idx,
index_t max_s_len, index_t batch_size,
index_t restsize, DType value) {
const index_t seqpos = static_cast<int>(idx[batch]);
#pragma unroll
for (index_t s = seqpos; s < max_s_len; ++s) {
index_t incr = (batch * max_s_len * restsize) + (s * restsize);
#pragma unroll
for (index_t r = 0; r < restsize; ++r)
KERNEL_ASSIGN(in[incr + r], req, value);
}
}
};

template<typename DType, typename IType>
void SequenceMaskExec(
const mshadow::Tensor<cpu, 3, DType> &data,
const mshadow::Tensor<cpu, 1, IType> &indices,
const OpReqType req, mshadow::Stream<cpu> *const s,
int axis, DType val) {
using namespace mshadow;
using namespace mshadow::expr;
using namespace mxnet_op;

index_t batch = indices.size(0);
index_t max_seq_len = data.size(axis);
index_t restsize = data.size(2);

MXNET_ASSIGN_REQ_SWITCH(req, req_type, {
if (axis == 1) {
Kernel<SequenceMask1CPUKernel<req_type>, cpu>::Launch(
s, batch, data.dptr_, indices.dptr_, max_seq_len, batch, restsize,
val);
} else {
Kernel<SequenceMask0CPUKernel<req_type>, cpu>::Launch(
s, batch, data.dptr_, indices.dptr_, max_seq_len, batch, restsize,
val);
}
});
}

template <>
Operator *CreateOp<cpu>(SequenceMaskParam param, int dtype, int itype) {
Operator *op = nullptr;
Expand Down
59 changes: 59 additions & 0 deletions src/operator/sequence_mask.cu
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,65 @@
namespace mxnet {
namespace op {

// (seqlen, batch, rest) case
template <int req>
struct SequenceMask0GPUKernel {
template <typename DType, typename IType>
MSHADOW_XINLINE static void Map(int i, DType *in, const IType *idx,
index_t max_s_len, index_t batch_size,
index_t restsize, DType value) {
index_t batch = i / restsize % batch_size;
const index_t seqpos = static_cast<int>(idx[batch]);
index_t seq = i / restsize / batch_size;
if (seq >= seqpos) {
KERNEL_ASSIGN(in[i], req, value);
}
}
};

// (batch, seqlen, rest) case
template <int req>
struct SequenceMask1GPUKernel {
template <typename DType, typename IType>
MSHADOW_XINLINE static void Map(int i, DType *in, const IType *idx,
index_t max_s_len, index_t batch_size,
index_t restsize, DType value) {
index_t batch = i / restsize / max_s_len;
const index_t seqpos = static_cast<int>(idx[batch]);
index_t seq = i / restsize % max_s_len;
if (seq >= seqpos) {
KERNEL_ASSIGN(in[i], req, value);
}
}
};

template<typename DType, typename IType>
void SequenceMaskExec(
const mshadow::Tensor<gpu, 3, DType> &data,
const mshadow::Tensor<gpu, 1, IType> &indices,
const OpReqType req, mshadow::Stream<gpu> *const s,
int axis, DType val) {
using namespace mshadow;
using namespace mshadow::expr;
using namespace mxnet_op;

index_t batch = indices.size(0);
index_t max_seq_len = data.size(axis);
index_t restsize = data.size(2);

MXNET_ASSIGN_REQ_SWITCH(req, req_type, {
if (axis == 1) {
Kernel<SequenceMask1GPUKernel<req_type>, gpu>::Launch(
s, data.shape_.Size(), data.dptr_, indices.dptr_, max_seq_len, batch, restsize,
val);
} else {
Kernel<SequenceMask0GPUKernel<req_type>, gpu>::Launch(
s, data.shape_.Size(), data.dptr_, indices.dptr_, max_seq_len, batch, restsize,
val);
}
});
}

template <> Operator *CreateOp<gpu>(SequenceMaskParam param, int dtype, int itype) {
Operator *op = NULL;
MSHADOW_TYPE_SWITCH(dtype, DType, {
Expand Down

0 comments on commit db55051

Please sign in to comment.