Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
add op isnan isinf (#17535)
Browse files Browse the repository at this point in the history
  • Loading branch information
Alicia1529 authored Feb 9, 2020
1 parent 9883b99 commit c92f954
Show file tree
Hide file tree
Showing 10 changed files with 400 additions and 4 deletions.
102 changes: 101 additions & 1 deletion python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
'tril', 'identity', 'take', 'ldexp', 'vdot', 'inner', 'outer',
'equal', 'not_equal', 'greater', 'less', 'greater_equal', 'less_equal', 'hsplit', 'rot90', 'einsum',
'true_divide', 'nonzero', 'quantile', 'percentile', 'shares_memory', 'may_share_memory',
'diff', 'resize', 'nan_to_num', 'where', 'bincount']
'diff', 'resize', 'nan_to_num', 'isnan', 'isinf', 'where', 'bincount']


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -6543,6 +6543,106 @@ def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None, **kwargs):
raise TypeError('type {} not supported'.format(str(type(x))))


@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def isnan(x, out=None, **kwargs):
"""
Test element-wise for NaN and return result as a boolean array.
Parameters
----------
x : ndarray
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
y : ndarray or bool
True where x is NaN, false otherwise.
This is a scalar if x is a scalar.
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.
This function differs from the original `numpy.isnan
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in
the following aspects:
- Does not support complex number for now
- Input type does not support Python native iterables(list, tuple, ...).
- ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output.
- ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output.
- ``out`` param does not support scalar input case.
Examples
--------
>>> np.isnan(np.nan)
True
>>> np.isnan(np.inf)
False
>>> np.isnan(np.array([np.log(-1.),1.,np.log(0)]))
array([ True, False, False])
"""
return _unary_func_helper(x, _npi.isnan, _np.isnan, out=out, **kwargs)


@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def isinf(x, out=None, **kwargs):
"""
Test element-wise for positive or negative infinity.
Parameters
----------
x : ndarray
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
y : ndarray or bool
True where x is positive or negative infinity, false otherwise.
This is a scalar if x is a scalar.
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.
This function differs from the original `numpy.isnan
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in
the following aspects:
- Does not support complex number for now
- Input type does not support Python native iterables(list, tuple, ...).
- ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output.
- ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output.
- ``out`` param does not support scalar input case.
Examples
--------
>>> np.isinf(np.inf)
True
>>> np.isinf(np.nan)
False
>>> np.isinf(np.array([np.inf, -np.inf, 1.0, np.nan]))
array([ True, True, False, False])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([True, True, True], dtype=np.bool_)
>>> np.isinf(x, y)
array([ True, False, True])
>>> y
array([ True, False, True])
"""
return _unary_func_helper(x, _npi.isinf, _np.isinf, out=out, **kwargs)


@set_module('mxnet.ndarray.numpy')
def where(condition, x=None, y=None):
"""where(condition, [x, y])
Expand Down
104 changes: 102 additions & 2 deletions python/mxnet/numpy/multiarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,8 +64,8 @@
'bitwise_and', 'bitwise_xor', 'bitwise_or', 'rad2deg', 'deg2rad',
'unique', 'lcm', 'tril', 'identity', 'take', 'ldexp', 'vdot', 'inner', 'outer', 'equal', 'not_equal',
'greater', 'less', 'greater_equal', 'less_equal', 'hsplit', 'rot90', 'einsum', 'true_divide', 'nonzero',
'quantile', 'percentile', 'shares_memory', 'may_share_memory', 'diff', 'resize', 'nan_to_num', 'where',
'bincount']
'quantile', 'percentile', 'shares_memory', 'may_share_memory', 'diff', 'resize',
'nan_to_num', 'isnan', 'isinf', 'where', 'bincount']

__all__ += fallback.__all__

Expand Down Expand Up @@ -8625,6 +8625,106 @@ def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None, **kwargs):
return _mx_nd_np.nan_to_num(x, copy=copy, nan=nan, posinf=posinf, neginf=neginf)


@set_module('mxnet.numpy')
@wrap_np_unary_func
def isnan(x, out=None, **kwargs):
"""
Test element-wise for NaN and return result as a boolean array.
Parameters
----------
x : ndarray
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
y : ndarray or bool
True where x is NaN, false otherwise.
This is a scalar if x is a scalar.
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.
This function differs from the original `numpy.isnan
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in
the following aspects:
- Does not support complex number for now
- Input type does not support Python native iterables(list, tuple, ...).
- ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output.
- ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output.
- ``out`` param does not support scalar input case.
Examples
--------
>>> np.isnan(np.nan)
True
>>> np.isnan(np.inf)
False
>>> np.isnan(np.array([np.log(-1.),1.,np.log(0)]))
array([ True, False, False])
"""
return _mx_nd_np.isnan(x, out=out, **kwargs)


@set_module('mxnet.numpy')
@wrap_np_unary_func
def isinf(x, out=None, **kwargs):
"""
Test element-wise for positive or negative infinity.
Parameters
----------
x : ndarray
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
y : ndarray or bool
True where x is positive or negative infinity, false otherwise.
This is a scalar if x is a scalar.
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.
This function differs from the original `numpy.isnan
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in
the following aspects:
- Does not support complex number for now
- Input type does not support Python native iterables(list, tuple, ...).
- ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output.
- ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output.
- ``out`` param does not support scalar input case.
Examples
--------
>>> np.isinf(np.inf)
True
>>> np.isinf(np.nan)
False
>>> np.isinf(np.array([np.inf, -np.inf, 1.0, np.nan]))
array([ True, True, False, False])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([True, True, True], dtype=np.bool_)
>>> np.isinf(x, y)
array([ True, False, True])
>>> y
array([ True, False, True])
"""
return _mx_nd_np.isinf(x, out=out, **kwargs)


@set_module('mxnet.numpy')
def where(condition, x=None, y=None):
"""where(condition, [x, y])
Expand Down
2 changes: 2 additions & 0 deletions python/mxnet/numpy_dispatch_protocol.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,6 +171,8 @@ def _run_with_array_ufunc_proto(*args, **kwargs):
'bincount',
'empty_like',
'nan_to_num',
'isnan',
'isinf',
]


Expand Down
78 changes: 77 additions & 1 deletion python/mxnet/symbol/numpy/_symbol.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@
'tril', 'identity', 'take', 'ldexp', 'vdot', 'inner', 'outer',
'equal', 'not_equal', 'greater', 'less', 'greater_equal', 'less_equal', 'hsplit', 'rot90', 'einsum',
'true_divide', 'quantile', 'percentile', 'shares_memory', 'may_share_memory', 'diff',
'resize', 'nan_to_num', 'where', 'bincount']
'resize', 'nan_to_num', 'isnan', 'isinf', 'where', 'bincount']


@set_module('mxnet.symbol.numpy')
Expand Down Expand Up @@ -5883,6 +5883,82 @@ def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None, **kwargs):
raise TypeError('type {} not supported'.format(str(type(x))))


@set_module('mxnet.symbol.numpy')
@wrap_np_unary_func
def isnan(x, out=None, **kwargs):
"""
Test element-wise for NaN and return result as a boolean array.
Parameters
----------
x : _Symbol
Input array.
out : _Symbol or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
y : _Symbol or bool
True where x is NaN, false otherwise.
This is a scalar if x is a scalar.
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.
This function differs from the original `numpy.isnan
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in
the following aspects:
- Does not support complex number for now
- Input type does not support Python native iterables(list, tuple, ...).
- ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output.
- ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output.
- ``out`` param does not support scalar input case.
"""
return _unary_func_helper(x, _npi.isnan, _np.isnan, out=out, **kwargs)


@set_module('mxnet.symbol.numpy')
@wrap_np_unary_func
def isinf(x, out=None, **kwargs):
"""
Test element-wise for positive or negative infinity.
Parameters
----------
x : _Symbol
Input array.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
y : _Symbol or bool
True where x is positive or negative infinity, false otherwise.
This is a scalar if x is a scalar.
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
This means that Not a Number is not equivalent to infinity.
This function differs from the original `numpy.isnan
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in
the following aspects:
- Does not support complex number for now
- Input type does not support Python native iterables(list, tuple, ...).
- ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output.
- ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output.
- ``out`` param does not support scalar input case.
"""
return _unary_func_helper(x, _npi.isinf, _np.isinf, out=out, **kwargs)


@set_module('mxnet.symbol.numpy')
def where(condition, x, y):
"""
Expand Down
16 changes: 16 additions & 0 deletions src/operator/mshadow_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -683,6 +683,22 @@ struct fix : public mxnet_op::tunable {
}
};

/*! \brief used to determine whether a number is Not A Number*/
struct isnan : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static bool Map(DType a) {
return IsNan(a);
}
};

/*! \brief used to determine whether a number is infinite*/
struct isinf : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static bool Map(DType a) {
return IsInf(a);
}
};

/*! \brief used for generate gradient of MAE loss*/
MXNET_BINARY_MATH_OP_NC(minus_sign, a - b > DType(0) ? DType(1) : -DType(1));

Expand Down
8 changes: 8 additions & 0 deletions src/operator/numpy/np_elemwise_unary_op_basic.cc
Original file line number Diff line number Diff line change
Expand Up @@ -287,6 +287,14 @@ MXNET_OPERATOR_REGISTER_NUMPY_UNARY(_npi_expm1, "x", mshadow_op::expm1)
MXNET_OPERATOR_REGISTER_NUMPY_UNARY_LOGIC(_npi_logical_not, "x", mshadow_op::np_logical_not)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes);

// isnan
MXNET_OPERATOR_REGISTER_NUMPY_UNARY_LOGIC(_npi_isnan, "x", mshadow_op::isnan)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes);

// isinf
MXNET_OPERATOR_REGISTER_NUMPY_UNARY_LOGIC(_npi_isinf, "x", mshadow_op::isinf)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes);

// sin
MXNET_OPERATOR_REGISTER_NUMPY_UNARY(_npi_sin, "x", mshadow_op::sin)
.describe(R"code(Trigonometric sine, element-wise.
Expand Down
6 changes: 6 additions & 0 deletions src/operator/numpy/np_elemwise_unary_op_basic.cu
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,12 @@ MXNET_OPERATOR_REGISTER_NUMPY_UNARY_GPU(_npi_expm1, mshadow_op::expm1);
NNVM_REGISTER_OP(_npi_logical_not)
.set_attr<FCompute>("FCompute<gpu>", UnaryOp::ComputeLogic<gpu, mshadow_op::np_logical_not>);

NNVM_REGISTER_OP(_npi_isnan)
.set_attr<FCompute>("FCompute<gpu>", UnaryOp::ComputeLogic<gpu, mshadow_op::isnan>);

NNVM_REGISTER_OP(_npi_isinf)
.set_attr<FCompute>("FCompute<gpu>", UnaryOp::ComputeLogic<gpu, mshadow_op::isinf>);

MXNET_OPERATOR_REGISTER_NUMPY_UNARY_GPU(_npi_sin, mshadow_op::sin);

MXNET_OPERATOR_REGISTER_NUMPY_UNARY_GPU(_npi_cos, mshadow_op::cos);
Expand Down
2 changes: 2 additions & 0 deletions src/operator/operator_tune.cc
Original file line number Diff line number Diff line change
Expand Up @@ -312,6 +312,8 @@ IMPLEMENT_UNARY_WORKLOAD_BWD(mxnet::op::mshadow_op::radians_grad); // NOLINT()
IMPLEMENT_UNARY_WORKLOAD_FWD(mxnet::op::mshadow_op::nt); // NOLINT()
IMPLEMENT_UNARY_WORKLOAD_FWD_WITH_BOOL(mxnet::op::mshadow_op::np_logical_not); // NOLINT()
IMPLEMENT_UNARY_WORKLOAD_FWD_WITH_BOOL(mxnet::op::mshadow_op::bitwise_not); // NOLINT()
IMPLEMENT_UNARY_WORKLOAD_FWD_WITH_BOOL(mxnet::op::mshadow_op::isnan); // NOLINT()
IMPLEMENT_UNARY_WORKLOAD_FWD_WITH_BOOL(mxnet::op::mshadow_op::isinf); // NOLINT()
IMPLEMENT_UNARY_WORKLOAD_BWD(mxnet::op::mshadow_op::nt); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_FWD(mxnet::op::mshadow_op::clip); // NOLINT()
IMPLEMENT_BINARY_WORKLOAD_BWD(mxnet::op::mshadow_op::clip); // NOLINT()
Expand Down
Loading

0 comments on commit c92f954

Please sign in to comment.