Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
update comments
Browse files Browse the repository at this point in the history
  • Loading branch information
lanking520 committed Apr 26, 2019
1 parent e7ac2fb commit 93256ef
Showing 1 changed file with 13 additions and 13 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -247,23 +247,23 @@ abstract class BaseModule {

/**
* Run prediction and collect the outputs.
* The concatenation process will be like
* {{{
* outputBatches = [
* [a1, a2, a3], // batch a
* [b1, b2, b3] // batch b
* ]
* result = [
* NDArray, // [a1, b1]
* NDArray, // [a2, b2]
* NDArray, // [a3, b3]
* ]
* }}}
* @param evalData
* @param evalData dataIter to do the Inference
* @param numBatch Default is -1, indicating running all the batches in the data iterator.
* @param reset Default is `True`, indicating whether we should reset the data iter before start
* doing prediction.
* @return The return value will be a list `[out1, out2, out3]`.
* The concatenation process will be like
* {{{
* outputBatches = [
* [a1, a2, a3], // batch a
* [b1, b2, b3] // batch b
* ]
* result = [
* NDArray, // [a1, b1]
* NDArray, // [a2, b2]
* NDArray, // [a3, b3]
* ]
* }}}
* Where each element is concatenation of the outputs for all the mini-batches.
*/
def predict(evalData: DataIter, numBatch: Int = -1, reset: Boolean = true)
Expand Down

0 comments on commit 93256ef

Please sign in to comment.