This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add an inference script providing both accuracy and benchmark result …
…for original wide_n_deep example (#13895) * Add a inference script can provide both accuracy and benchmark result * minor changes * minor fix to use keep similar coding style as other examples * fix typo * remove code redundance and other minor changes * Addressing review comments and minor pylint fix * remove parameter 'accuracy' to make logic simple
- Loading branch information
1 parent
ed0b791
commit 8bfbb7d
Showing
4 changed files
with
142 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
# Related to feature engineering, please see preprocess in data.py | ||
ADULT = { | ||
'train': 'adult.data', | ||
'test': 'adult.test', | ||
'url': 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/', | ||
'num_linear_features': 3000, | ||
'num_embed_features': 2, | ||
'num_cont_features': 38, | ||
'embed_input_dims': [1000, 1000], | ||
'hidden_units': [8, 50, 100], | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
import mxnet as mx | ||
from mxnet.test_utils import * | ||
from config import * | ||
from data import get_uci_adult | ||
from model import wide_deep_model | ||
import argparse | ||
import os | ||
import time | ||
|
||
parser = argparse.ArgumentParser(description="Run sparse wide and deep inference", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
parser.add_argument('--num-infer-batch', type=int, default=100, | ||
help='number of batches to inference') | ||
parser.add_argument('--load-epoch', type=int, default=0, | ||
help='loading the params of the corresponding training epoch.') | ||
parser.add_argument('--batch-size', type=int, default=100, | ||
help='number of examples per batch') | ||
parser.add_argument('--benchmark', action='store_true', default=False, | ||
help='run the script for benchmark mode, not set for accuracy test.') | ||
parser.add_argument('--verbose', action='store_true', default=False, | ||
help='accurcy for each batch will be logged if set') | ||
parser.add_argument('--gpu', action='store_true', default=False, | ||
help='Inference on GPU with CUDA') | ||
parser.add_argument('--model-prefix', type=str, default='checkpoint', | ||
help='the model prefix') | ||
|
||
if __name__ == '__main__': | ||
import logging | ||
head = '%(asctime)-15s %(message)s' | ||
logging.basicConfig(level=logging.INFO, format=head) | ||
|
||
# arg parser | ||
args = parser.parse_args() | ||
logging.info(args) | ||
num_iters = args.num_infer_batch | ||
batch_size = args.batch_size | ||
benchmark = args.benchmark | ||
verbose = args.verbose | ||
model_prefix = args.model_prefix | ||
load_epoch = args.load_epoch | ||
ctx = mx.gpu(0) if args.gpu else mx.cpu() | ||
# dataset | ||
data_dir = os.path.join(os.getcwd(), 'data') | ||
val_data = os.path.join(data_dir, ADULT['test']) | ||
val_csr, val_dns, val_label = get_uci_adult(data_dir, ADULT['test'], ADULT['url']) | ||
# load parameters and symbol | ||
sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, load_epoch) | ||
# data iterator | ||
eval_data = mx.io.NDArrayIter({'csr_data': val_csr, 'dns_data': val_dns}, | ||
{'softmax_label': val_label}, batch_size, | ||
shuffle=True, last_batch_handle='discard') | ||
# module | ||
mod = mx.mod.Module(symbol=sym, context=ctx, data_names=['csr_data', 'dns_data'], | ||
label_names=['softmax_label']) | ||
mod.bind(data_shapes=eval_data.provide_data, label_shapes=eval_data.provide_label) | ||
# get the sparse weight parameter | ||
mod.set_params(arg_params=arg_params, aux_params=aux_params) | ||
|
||
data_iter = iter(eval_data) | ||
nbatch = 0 | ||
if benchmark: | ||
logging.info('Inference benchmark started ...') | ||
tic = time.time() | ||
for i in range(num_iters): | ||
try: | ||
batch = data_iter.next() | ||
except StopIteration: | ||
data_iter.reset() | ||
else: | ||
mod.forward(batch, is_train=False) | ||
for output in mod.get_outputs(): | ||
output.wait_to_read() | ||
nbatch += 1 | ||
score = (nbatch*batch_size)/(time.time() - tic) | ||
logging.info('batch size %d, process %s samples/s' % (batch_size, score)) | ||
else: | ||
logging.info('Inference started ...') | ||
# use accuracy as the metric | ||
metric = mx.metric.create(['acc']) | ||
accuracy_avg = 0.0 | ||
for batch in data_iter: | ||
nbatch += 1 | ||
metric.reset() | ||
mod.forward(batch, is_train=False) | ||
mod.update_metric(metric, batch.label) | ||
accuracy_avg += metric.get()[1][0] | ||
if args.verbose: | ||
logging.info('batch %d, accuracy = %s' % (nbatch, metric.get())) | ||
logging.info('averged accuracy on eval set is %.5f' % (accuracy_avg/nbatch)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters