This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add while_loop * Avoid input/output overlap for nnvm graph cut * Add more testcases * Enhance test 4.2 * Add more complicated testcases; Add testcase for nested loop * Check unused loop_vars in while_loop * Add testcases for RNN * Make lint happy * Make lint happy * Address TODOs * Fix flaky test for while_loop * Address comments * Improve docstring * Improve error message * Add benchmark code * Update benchmarks * Allow sparse types * Make max_iterations default to None * Add while_loop to docs/api/python/{symbol|ndarray}/contrib.md * Pad imperative while_loop so that it has the same shape with the symbolic one * Add example result into the example section * Remove unused class member * Rename unittest to test_contrib_control_flow.py * Update docstring * Update docstring * Trigger CI * Change threshold for assert_almost_equal * Trigger CI * Address comments from szha * Rewrite benchmark code * Fix sphinx warning
- Loading branch information
Showing
12 changed files
with
2,471 additions
and
174 deletions.
There are no files selected for viewing
Submodule tvm
updated
from 6ab4da to 290226
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
import subprocess | ||
import mxnet as mx | ||
from mxnet import gluon | ||
import time | ||
import copy | ||
|
||
def get_gpus(): | ||
""" | ||
return a list of GPUs | ||
""" | ||
try: | ||
re = subprocess.check_output(["nvidia-smi", "-L"], universal_newlines=True) | ||
except OSError: | ||
return [] | ||
return range(len([i for i in re.split('\n') if 'GPU' in i])) | ||
|
||
class TestRNNLayer(gluon.HybridBlock): | ||
def __init__(self, cell, prefix=None, params=None): | ||
super(TestRNNLayer, self).__init__(prefix=prefix, params=params) | ||
self.cell = cell | ||
|
||
def hybrid_forward(self, F, inputs, states): | ||
out, states = F.contrib.foreach(self.cell, inputs, states) | ||
return out | ||
|
||
def benchmark_rnn(cell, rnn_data, states): | ||
ctx = rnn_data.context | ||
num_batches = 20 | ||
|
||
# Imperative | ||
cell0 = copy.deepcopy(cell) | ||
layer0 = TestRNNLayer(cell0) | ||
layer0.initialize(ctx=ctx) | ||
|
||
# Hybridize | ||
cell1 = copy.deepcopy(cell) | ||
cell1.hybridize() | ||
layer1 = TestRNNLayer(cell1) | ||
layer1.initialize(ctx=ctx) | ||
|
||
# Hybridize | ||
cell2 = copy.deepcopy(cell) | ||
layer2 = TestRNNLayer(cell2) | ||
layer2.initialize(ctx=ctx) | ||
layer2.hybridize() | ||
layer2(rnn_data, states) | ||
|
||
# Hybridize | ||
cell3 = copy.deepcopy(cell) | ||
cell3.hybridize(static_alloc=True) | ||
layer3 = TestRNNLayer(cell3) | ||
layer3.initialize(ctx=ctx) | ||
|
||
tic = time.time() | ||
for i in range(num_batches): | ||
res0 = layer0(rnn_data, states) | ||
mx.nd.waitall() | ||
print("Imperative inference takes " + str(time.time() - tic)) | ||
|
||
tic = time.time() | ||
for i in range(num_batches): | ||
res1 = layer1(rnn_data, states) | ||
mx.nd.waitall() | ||
print("Hybrid-cell inference takes " + str(time.time() - tic)) | ||
|
||
tic = time.time() | ||
for i in range(num_batches): | ||
res3 = layer3(rnn_data, states) | ||
mx.nd.waitall() | ||
print("Static-hybrid-cell inference takes " + str(time.time() - tic)) | ||
|
||
tic = time.time() | ||
for i in range(num_batches): | ||
res2 = layer2(rnn_data, states) | ||
mx.nd.waitall() | ||
print("Hybrid inference takes " + str(time.time() - tic)) | ||
|
||
layer2.export("foreach_rnn") | ||
symnet = mx.symbol.load('foreach_rnn-symbol.json') | ||
args1 = {} | ||
params = layer2.collect_params() | ||
for key in params.keys(): | ||
args1[key] = params[key].data() | ||
args1['data0'] = rnn_data | ||
for i in range(len(states)): | ||
args1['data' + str(i + 1)] = states[i] | ||
exe = symnet.bind(ctx=ctx, args=args1) | ||
tic = time.time() | ||
for i in range(num_batches): | ||
exe.forward(is_train=False) | ||
mx.nd.waitall() | ||
print("Symbol inference takes " + str(time.time() - tic)) | ||
|
||
tic = time.time() | ||
for i in range(num_batches): | ||
with mx.autograd.record(): | ||
res0 = layer0(rnn_data, states) | ||
res0.backward() | ||
mx.nd.waitall() | ||
print("Imperative training takes " + str(time.time() - tic)) | ||
|
||
tic = time.time() | ||
for i in range(num_batches): | ||
with mx.autograd.record(): | ||
res1 = layer1(rnn_data, states) | ||
res1.backward() | ||
mx.nd.waitall() | ||
print("Hybrid-cell training takes " + str(time.time() - tic)) | ||
|
||
tic = time.time() | ||
for i in range(num_batches): | ||
with mx.autograd.record(): | ||
res3 = layer3(rnn_data, states) | ||
res3.backward() | ||
mx.nd.waitall() | ||
print("Static-hybrid-cell training takes " + str(time.time() - tic)) | ||
|
||
tic = time.time() | ||
for i in range(num_batches): | ||
with mx.autograd.record(): | ||
res2 = layer2(rnn_data, states) | ||
res2.backward() | ||
mx.nd.waitall() | ||
print("Hybrid training takes " + str(time.time() - tic)) | ||
|
||
# gradients for the backward of the foreach symbol | ||
args_grad1 = {} | ||
for key in args1.keys(): | ||
args_grad1[key] = mx.nd.empty(args1[key].shape, ctx=ctx) | ||
exe = symnet.bind(ctx=ctx, args=args1, args_grad=args_grad1) | ||
tic = time.time() | ||
for i in range(num_batches): | ||
exe.forward(is_train=True) | ||
exe.backward(res2) | ||
mx.nd.waitall() | ||
print("Symbol training takes " + str(time.time() - tic)) | ||
print("") | ||
|
||
if __name__ == '__main__': | ||
ndim = 512 | ||
seq_len = 100 | ||
batch_sizes = [1, 32] | ||
cells = [gluon.rnn.RNNCell(ndim, prefix='rnn_'), | ||
gluon.rnn.GRUCell(ndim, prefix='rnn_'), | ||
gluon.rnn.LSTMCell(ndim, prefix='rnn_')] | ||
ctxs = [mx.cpu(0), mx.gpu(0)] | ||
for cell in cells: | ||
for ctx in ctxs: | ||
for batch_size in batch_sizes: | ||
if len(get_gpus()) == 0 and ctx == mx.gpu(0): | ||
continue | ||
if isinstance(cell, gluon.rnn.RNNCell): | ||
rnn_data = mx.nd.normal(loc=0, scale=1, shape=(seq_len, batch_size, ndim), | ||
ctx=mx.cpu(0)) | ||
states = [] | ||
states.append(mx.nd.normal(loc=0, scale=1, shape=(batch_size, ndim), | ||
ctx=mx.cpu(0))) | ||
elif isinstance(cell, gluon.rnn.GRUCell): | ||
rnn_data = mx.nd.normal(loc=0, scale=1, shape=(seq_len, batch_size, ndim), | ||
ctx=mx.cpu(0)) | ||
states = [] | ||
states.append(mx.nd.normal(loc=0, scale=1, shape=(batch_size, ndim), | ||
ctx=mx.cpu(0))) | ||
elif isinstance(cell, gluon.rnn.LSTMCell): | ||
rnn_data = mx.nd.normal(loc=0, scale=1, shape=(seq_len, batch_size, ndim), | ||
ctx=mx.cpu(0)) | ||
states = [] | ||
states.append(mx.nd.normal(loc=0, scale=1, shape=(batch_size, ndim), | ||
ctx=mx.cpu(0))) | ||
states.append(mx.nd.normal(loc=0, scale=1, shape=(batch_size, ndim), | ||
ctx=mx.cpu(0))) | ||
if ctx == mx.gpu(0): | ||
dev = "GPU" | ||
else: | ||
dev = "CPU" | ||
print("Benchmark {} in {} (batch size: {})".format(cell._alias(), dev, | ||
batch_size)) | ||
benchmark_rnn(cell, rnn_data, states) |
Oops, something went wrong.