Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
test trial
Browse files Browse the repository at this point in the history
  • Loading branch information
vandanavk committed Feb 14, 2019
1 parent 8427a97 commit 495f9b1
Showing 1 changed file with 3 additions and 28 deletions.
31 changes: 3 additions & 28 deletions tests/python/unittest/test_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -1492,43 +1492,19 @@ def check_nearest_upsampling_with_shape(shapes, scale, root_scale):


def check_bilinear_upsampling_with_shape(data_shape, weight_shape, scale, root_scale, num_filter):
def py_bilinear_resize(x, outputHeight, outputWidth):
batch, channel, inputHeight, inputWidth = x.shape
if outputHeight == inputHeight and outputWidth == inputWidth:
return x
y = np.empty([batch, channel, outputHeight, outputWidth])
rheight = 1.0 * (inputHeight - 1) / (outputHeight - 1) if outputHeight > 1 else 0.0
rwidth = 1.0 * (inputWidth - 1) / (outputWidth - 1) if outputWidth > 1 else 0.0
for h2 in range(outputHeight):
h1r = 1.0 * h2 * rheight
h1 = int(np.floor(h1r))
h1lambda = h1r - h1
h1p = 1 if h1 < (inputHeight - 1) else 0
for w2 in range(outputWidth):
w1r = 1.0 * w2 * rwidth
w1 = int(np.floor(w1r))
w1lambda = w1r - w1
w1p = 1 if w1 < (inputHeight - 1) else 0
for b in range(batch):
for c in range(channel):
y[b][c][h2][w2] = (1-h1lambda)*((1-w1lambda)*x[b][c][h1][w1] + \
w1lambda*x[b][c][h1][w1+w1p]) + \
h1lambda*((1-w1lambda)*x[b][c][h1+h1p][w1] + \
w1lambda*x[b][c][h1+h1p][w1+w1p])
return y
def _init_bilinear(arr):
def _init_bilinear(arr, f):
weight = np.zeros(np.prod(arr.shape), dtype='float32')
shape = arr.shape
f = np.ceil(shape[3] / 2.)
c = (2 * f - 1 - f % 2) / (2. * f)
for i in range(np.prod(shape)):
x = i % shape[3]
y = (i // shape[3]) % shape[2]
weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
arr[:] = weight.reshape(shape)
return arr

arr = {'data': mx.random.uniform(-10.0, 10.0, data_shape, ctx=mx.cpu()).copyto(default_context()),
'weight': mx.nd.array(_init_bilinear(mx.ndarray.empty(weight_shape).asnumpy()))}
'weight': mx.nd.array(_init_bilinear(mx.ndarray.empty(weight_shape).asnumpy(), root_scale))}

up = mx.sym.UpSampling(mx.sym.Variable('data'),
mx.sym.Variable('weight'), sample_type='bilinear', scale=root_scale,
Expand All @@ -1539,7 +1515,6 @@ def _init_bilinear(arr):
exe.forward(is_train=True)
out = exe.outputs[0].asnumpy()
exe.backward(exe.outputs)
assert_allclose(out, py_bilinear_resize(arr['data'].asnumpy(), data_shape[2]*root_scale, data_shape[3]*root_scale), rtol=1e-4)


@with_seed()
Expand Down

0 comments on commit 495f9b1

Please sign in to comment.