This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[numpy] add op random.exponential (#17280)
* C++ ok * before rebase * sanity * change sth * change sth * change sth
- Loading branch information
Showing
8 changed files
with
384 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2019 by Contributors | ||
* \file np_exponential_op.cc | ||
* \brief Operator for numpy sampling from exponential distributions | ||
*/ | ||
|
||
#include "./np_exponential_op.h" | ||
#include "./dist_common.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
DMLC_REGISTER_PARAMETER(NumpyExponentialParam); | ||
|
||
NNVM_REGISTER_OP(_npi_exponential) | ||
.set_num_inputs( | ||
[](const nnvm::NodeAttrs& attrs) { | ||
const NumpyExponentialParam& param = nnvm::get<NumpyExponentialParam>(attrs.parsed); | ||
int num_inputs = 1; | ||
if (param.scale.has_value()) { | ||
num_inputs -= 1; | ||
} | ||
return num_inputs; | ||
}) | ||
.set_num_outputs(1) | ||
.set_attr<nnvm::FListInputNames>("FListInputNames", | ||
[](const NodeAttrs& attrs) { | ||
const NumpyExponentialParam& param = nnvm::get<NumpyExponentialParam>(attrs.parsed); | ||
int num_inputs = 1; | ||
if (param.scale.has_value()) { | ||
num_inputs -= 1; | ||
} | ||
return (num_inputs == 0) ? std::vector<std::string>() : std::vector<std::string>{"input1"}; | ||
}) | ||
.set_attr_parser(ParamParser<NumpyExponentialParam>) | ||
.set_attr<mxnet::FInferShape>("FInferShape", UnaryDistOpShape<NumpyExponentialParam>) | ||
.set_attr<nnvm::FInferType>("FInferType", | ||
[](const nnvm::NodeAttrs &attrs, std::vector<int> *in_attrs, std::vector<int> *out_attrs) { | ||
(*out_attrs)[0] = mshadow::kFloat32; | ||
return true; | ||
}) | ||
.set_attr<FResourceRequest>("FResourceRequest", | ||
[](const nnvm::NodeAttrs& attrs) { | ||
return std::vector<ResourceRequest>{ | ||
ResourceRequest::kRandom, ResourceRequest::kTempSpace}; | ||
}) | ||
.set_attr<FCompute>("FCompute<cpu>", NumpyExponentialForward<cpu>) | ||
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes) | ||
.add_argument("input1", "NDArray-or-Symbol", "Source input") | ||
.add_arguments(NumpyExponentialParam::__FIELDS__()); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2019 by Contributors | ||
* \file np_exponential_op.cu | ||
* \brief Operator for numpy sampling from exponential distributions | ||
*/ | ||
|
||
#include "./np_exponential_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
NNVM_REGISTER_OP(_npi_exponential) | ||
.set_attr<FCompute>("FCompute<gpu>", NumpyExponentialForward<gpu>); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2019 by Contributors | ||
* \file np_exponential_op.h | ||
* \brief Operator for numpy sampling from exponential distribution. | ||
*/ | ||
|
||
#ifndef MXNET_OPERATOR_NUMPY_RANDOM_NP_EXPONENTIAL_OP_H_ | ||
#define MXNET_OPERATOR_NUMPY_RANDOM_NP_EXPONENTIAL_OP_H_ | ||
|
||
#include <mxnet/operator_util.h> | ||
#include <algorithm> | ||
#include <string> | ||
#include <vector> | ||
#include <cmath> | ||
#include "../../elemwise_op_common.h" | ||
#include "../../mshadow_op.h" | ||
#include "../../mxnet_op.h" | ||
#include "../../operator_common.h" | ||
#include "../../tensor/elemwise_binary_broadcast_op.h" | ||
#include "./dist_common.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
struct NumpyExponentialParam : public dmlc::Parameter<NumpyExponentialParam> { | ||
dmlc::optional<float> scale; | ||
dmlc::optional<mxnet::Tuple<int>> size; | ||
DMLC_DECLARE_PARAMETER(NumpyExponentialParam) { | ||
DMLC_DECLARE_FIELD(scale) | ||
.set_default(dmlc::optional<float>(1.0)); | ||
DMLC_DECLARE_FIELD(size) | ||
.set_default(dmlc::optional<mxnet::Tuple<int>>()) | ||
.describe("Output shape. If the given shape is, " | ||
"e.g., (m, n, k), then m * n * k samples are drawn. " | ||
"Default is None, in which case a single value is returned."); | ||
} | ||
}; | ||
|
||
template <typename DType> | ||
struct scalar_exponential_kernel { | ||
MSHADOW_XINLINE static void Map(index_t i, float scale, float *threshold, | ||
DType *out) { | ||
out[i] = -scale * log(threshold[i]); | ||
} | ||
}; | ||
|
||
namespace mxnet_op { | ||
|
||
template <typename IType> | ||
struct check_legal_scale_kernel { | ||
MSHADOW_XINLINE static void Map(index_t i, IType *scalar, float* flag) { | ||
if (scalar[i] < 0.0) { | ||
flag[0] = -1.0; | ||
} | ||
} | ||
}; | ||
|
||
|
||
template <int ndim, typename IType, typename OType> | ||
struct exponential_kernel { | ||
MSHADOW_XINLINE static void Map(index_t i, | ||
const Shape<ndim> &stride, | ||
const Shape<ndim> &oshape, | ||
IType *scales, float* threshold, OType *out) { | ||
Shape<ndim> coord = unravel(i, oshape); | ||
auto idx = static_cast<index_t>(dot(coord, stride)); | ||
out[i] = -scales[idx] * log(threshold[i]); | ||
} | ||
}; | ||
|
||
} // namespace mxnet_op | ||
|
||
template <typename xpu> | ||
void NumpyExponentialForward(const nnvm::NodeAttrs &attrs, | ||
const OpContext &ctx, | ||
const std::vector<TBlob> &inputs, | ||
const std::vector<OpReqType> &req, | ||
const std::vector<TBlob> &outputs) { | ||
using namespace mshadow; | ||
using namespace mxnet_op; | ||
const NumpyExponentialParam ¶m = nnvm::get<NumpyExponentialParam>(attrs.parsed); | ||
Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
index_t output_len = outputs[0].Size(); | ||
Random<xpu, float> *prnd = ctx.requested[0].get_random<xpu, float>(s); | ||
Tensor<xpu, 1, float> workspace = | ||
ctx.requested[1].get_space_typed<xpu, 1, float>(Shape1(output_len + 1), s); | ||
Tensor<xpu, 1, float> uniform_tensor = workspace.Slice(0, output_len); | ||
Tensor<xpu, 1, float> indicator_device = workspace.Slice(output_len, output_len + 1); | ||
float indicator_host = 1.0; | ||
float *indicator_device_ptr = indicator_device.dptr_; | ||
Kernel<set_zero, xpu>::Launch(s, 1, indicator_device_ptr); | ||
prnd->SampleUniform(&workspace, 0.0, 1.0); | ||
if (param.scale.has_value()) { | ||
CHECK_GE(param.scale.value(), 0.0) << "ValueError: expect scale >= 0"; | ||
MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, { | ||
Kernel<scalar_exponential_kernel<DType>, xpu>::Launch( | ||
s, outputs[0].Size(), param.scale.value(), | ||
uniform_tensor.dptr_, outputs[0].dptr<DType>()); | ||
}); | ||
} else { | ||
MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, IType, { | ||
Kernel<check_legal_scale_kernel<IType>, xpu>::Launch( | ||
s, inputs[0].Size(), inputs[0].dptr<IType>(), indicator_device_ptr); | ||
}); | ||
_copy<xpu>(s, &indicator_host, indicator_device_ptr); | ||
CHECK_GE(indicator_host, 0.0) << "ValueError: expect scale >= 0"; | ||
mxnet::TShape new_lshape, new_oshape; | ||
int ndim = FillShape(inputs[0].shape_, inputs[0].shape_, outputs[0].shape_, | ||
&new_lshape, &new_lshape, &new_oshape); | ||
MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, IType, { | ||
MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, OType, { | ||
BROADCAST_NDIM_SWITCH(ndim, NDim, { | ||
Shape<NDim> oshape = new_oshape.get<NDim>(); | ||
Shape<NDim> stride = calc_stride(new_lshape.get<NDim>()); | ||
Kernel<exponential_kernel<NDim, IType, OType>, xpu>::Launch( | ||
s, outputs[0].Size(), stride, oshape, inputs[0].dptr<IType>(), | ||
uniform_tensor.dptr_, outputs[0].dptr<OType>()); | ||
}); | ||
}); | ||
}); | ||
} | ||
} | ||
|
||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_OPERATOR_NUMPY_RANDOM_NP_EXPONENTIAL_OP_H_ |
Oops, something went wrong.