Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
GPU RNN to use TempSpace resource for workspace. (#15056)
Browse files Browse the repository at this point in the history
* GPU RNN to use TempSpace resource for workspace.

* Trigger CI.

* Fix syntax error after merge.
  • Loading branch information
DickJC123 authored and szha committed May 25, 2019
1 parent 9250a73 commit 136a5df
Show file tree
Hide file tree
Showing 2 changed files with 45 additions and 34 deletions.
44 changes: 26 additions & 18 deletions src/operator/rnn-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -549,7 +549,6 @@ class RNNOp {
CUDNN_CALL(cudnnDestroyTensorDescriptor(dy_desc_vec_[i]));
}
init_cudnn_ = false;
Storage::Get()->Free(temp_space_);
Storage::Get()->Free(reserve_space_);
}
#if MXNET_USE_CUDNN_GE_7200
Expand Down Expand Up @@ -677,6 +676,12 @@ class RNNOp {
Init(ctx, s, in_data, out_data);
}

// Get temp space
int temp_size = workspace_size_;
Tensor<gpu, 1, DType> temp_space =
ctx.requested[rnn_enum::kTempSpace].get_space_typed<gpu, 1, DType>(
mshadow::Shape1(temp_size), s);

#if MXNET_USE_CUDNN_GE_7200

cudnnRNNDataLayout_t layout_t;
Expand Down Expand Up @@ -770,7 +775,7 @@ class RNNOp {
nullptr,
nullptr,
nullptr,
temp_space_.dptr,
temp_space.dptr_,
workspace_byte_,
reserve_space_.dptr,
reserve_space_byte_));
Expand All @@ -792,7 +797,7 @@ class RNNOp {
hy_ptr,
cy_desc_,
cy_ptr,
temp_space_.dptr,
temp_space.dptr_,
workspace_byte_,
reserve_space_.dptr,
reserve_space_byte_));
Expand Down Expand Up @@ -823,7 +828,7 @@ class RNNOp {
nullptr,
nullptr,
nullptr,
temp_space_.dptr,
temp_space.dptr_,
workspace_byte_));
#else
CUDNN_CALL(cudnnRNNForwardInference(s->dnn_handle_,
Expand All @@ -843,7 +848,7 @@ class RNNOp {
hy_ptr,
cy_desc_,
cy_ptr,
temp_space_.dptr,
temp_space.dptr_,
workspace_byte_));
#endif
}
Expand Down Expand Up @@ -1061,6 +1066,12 @@ class RNNOp {
Init(ctx, s, in_data, out_data);
}

// Get temp space
int temp_size = workspace_size_;
Tensor<gpu, 1, DType> temp_space =
ctx.requested[rnn_enum::kTempSpace].get_space_typed<gpu, 1, DType>(
mshadow::Shape1(temp_size), s);

#if MXNET_USE_CUDNN_GE_7200
CUDNN_CALL(cudnnRNNBackwardDataEx(s->dnn_handle_,
rnn_desc_,
Expand Down Expand Up @@ -1088,7 +1099,7 @@ class RNNOp {
dcx_ptr,
nullptr,
nullptr,
temp_space_.dptr,
temp_space.dptr_,
workspace_byte_,
reserve_space_.dptr,
reserve_space_byte_));
Expand All @@ -1100,7 +1111,7 @@ class RNNOp {
hx.dptr_,
y_data_desc_,
y.dptr_,
temp_space_.dptr,
temp_space.dptr_,
workspace_byte_,
dw_desc_,
dw.dptr_,
Expand Down Expand Up @@ -1130,7 +1141,7 @@ class RNNOp {
dhx.dptr_,
dcx_desc_,
dcx_ptr,
temp_space_.dptr,
temp_space.dptr_,
workspace_byte_,
reserve_space_.dptr,
reserve_space_byte_));
Expand All @@ -1143,7 +1154,7 @@ class RNNOp {
hx.dptr_,
y_desc_vec_.data(),
y.dptr_,
temp_space_.dptr,
temp_space.dptr_,
workspace_byte_,
dw_desc_,
dw.dptr_,
Expand Down Expand Up @@ -1378,17 +1389,16 @@ class RNNOp {
strideA));

// Create Dropout descriptors
DType* dropout_states_ = NULL;
if (param_.p > 0) {
ctx.requested[rnn_enum::kCuDNNDropoutDescSpace].get_cudnn_dropout_desc
(&dropout_desc_, s, 1.0f - param_.p, seed_);
} else {
dropout_byte_ = 0;
}

// Only update the probability by passing in a null dropout_states ptr
DType* dropout_states = NULL;
size_t dropout_bytes = 0;
CUDNN_CALL(cudnnSetDropoutDescriptor(dropout_desc_, s->dnn_handle_,
param_.p, // discard probability
dropout_states_, dropout_byte_,
dropout_states, dropout_bytes,
seed_));

// RNN descriptors
Expand Down Expand Up @@ -1469,8 +1479,6 @@ class RNNOp {
workspace_size_ = workspace_byte_ / sizeof(DType);
// Allocate the reserve space
reserve_space_ = Storage::Get()->Alloc(reserve_space_byte_, Context::GPU(s->dev_id));
// Allocate the temp space
temp_space_ = Storage::Get()->Alloc(workspace_byte_, Context::GPU(s->dev_id));
// Check that number of params are correct
size_t cudnn_param_size;
CUDNN_CALL(cudnnGetRNNParamsSize(s->dnn_handle_,
Expand Down Expand Up @@ -1539,9 +1547,9 @@ class RNNOp {
cudnnDirectionMode_t direction_;
cudnnRNNInputMode_t input_mode_;
cudnnDropoutDescriptor_t dropout_desc_;
Storage::Handle reserve_space_, temp_space_;
Storage::Handle reserve_space_;
uint64_t seed_ = 17 + rand() % 4096; // NOLINT(runtime/threadsafe_fn)
size_t workspace_byte_, reserve_space_byte_, dropout_byte_;
size_t workspace_byte_, reserve_space_byte_;
int workspace_size_;
std::vector<cudnnTensorDescriptor_t> x_desc_vec_, y_desc_vec_, dx_desc_vec_, dy_desc_vec_;
#if MXNET_USE_CUDNN_GE_7200
Expand Down
35 changes: 19 additions & 16 deletions src/operator/rnn.cc
Original file line number Diff line number Diff line change
Expand Up @@ -167,6 +167,22 @@ static bool RNNType(const nnvm::NodeAttrs& attrs,
return true;
}

static std::vector<ResourceRequest> RNNResourceEx(const NodeAttrs& attrs, const int dev_mask,
const DispatchMode dispatch_mode) {
std::vector<ResourceRequest> request;
if (dev_mask == kGPU) {
#if MXNET_USE_CUDNN_RNN
request.emplace_back(ResourceRequest::kTempSpace);

const RNNParam& param = nnvm::get<RNNParam>(attrs.parsed);
if (param.p != 0 && 1.0f - param.p > 0) {
request.emplace_back(ResourceRequest::kCuDNNDropoutDesc);
}
#endif
}
return request;
}

inline static bool RNNStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
Expand Down Expand Up @@ -703,21 +719,7 @@ The definition of GRU here is slightly different from paper but compatible with
.set_attr<FStatefulComputeEx>("FStatefulComputeEx<cpu>", RNNStatefulComputeCPU)
#endif
.set_attr<nnvm::FGradient>("FGradient", RNNGrad{"_backward_RNN"})
.set_attr<FResourceRequestEx>("FResourceRequestEx",
[](const NodeAttrs& attrs, const int dev_mask, const DispatchMode dispatch_mode) {
std::vector<ResourceRequest> request;
if (dev_mask == kGPU) {
#if MXNET_USE_CUDNN_RNN
request.emplace_back(ResourceRequest::kTempSpace);

const RNNParam& param = nnvm::get<RNNParam>(attrs.parsed);
if (param.p != 0 && 1.0f - param.p > 0) {
request.emplace_back(ResourceRequest::kCuDNNDropoutDesc);
}
#endif
}
return request;
})
.set_attr<FResourceRequestEx>("FResourceRequestEx", RNNResourceEx)
.add_argument("data", "NDArray-or-Symbol", "Input data to RNN")
.add_argument("parameters", "NDArray-or-Symbol",
"Vector of all RNN trainable parameters concatenated")
Expand All @@ -737,6 +739,7 @@ NNVM_REGISTER_OP(_backward_RNN)
.set_attr_parser(ParamParser<RNNParam>)
.set_attr<bool>("TIsLayerOpBackward", true)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FStatefulCompute>("FStatefulCompute<cpu>", RNNStatefulGradCompute<cpu>);
.set_attr<FStatefulCompute>("FStatefulCompute<cpu>", RNNStatefulGradCompute<cpu>)
.set_attr<FResourceRequestEx>("FResourceRequestEx", RNNResourceEx);
} // namespace op
} // namespace mxnet

0 comments on commit 136a5df

Please sign in to comment.