Skip to content

Commit

Permalink
[Large Tensor] Fixed SoftmaxActivation op (apache#17634)
Browse files Browse the repository at this point in the history
* Changed dtype for data & gradient dimensions

* Add nightly test
  • Loading branch information
connorgoggins authored and anirudh2290 committed May 29, 2020
1 parent 28c1c27 commit 4be5fff
Show file tree
Hide file tree
Showing 2 changed files with 19 additions and 7 deletions.
14 changes: 7 additions & 7 deletions src/operator/nn/softmax_activation-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -82,9 +82,9 @@ void SoftmaxActivationCompute(const nnvm::NodeAttrs& attrs,
} else {
CHECK_GE(in_data.ndim(), 3)
<< "Input need to have a least 3 dimensions when mode=channel";
int n = in_data.size(0);
int k = in_data.size(1);
Shape<3> s3 = Shape3(n, k, static_cast<int>(in_data.Size()/n/k));
index_t n = in_data.size(0);
index_t k = in_data.size(1);
Shape<3> s3 = Shape3(n, k, static_cast<index_t>(in_data.Size()/n/k));
Tensor<xpu, 3, real_t> data = in_data.get_with_shape<xpu, 3, real_t>(s3, s);
Tensor<xpu, 3, real_t> out = out_data.get_with_shape<xpu, 3, real_t>(s3, s);
Softmax(out, data);
Expand All @@ -107,10 +107,10 @@ void SoftmaxActivationGradCompute(const nnvm::NodeAttrs& attrs,
const OpReqType &req = reqs[0];
const TBlob &in_grad = outputs[0];
// Use 3d tensor for both mode -> {instance, channel}. Get shapes
int total_size = in_grad.Size();
int batch_size = in_grad.shape_[0];
int channel_num = in_grad.shape_[1];
int rest_size = total_size / (batch_size * channel_num);
index_t total_size = in_grad.Size();
index_t batch_size = in_grad.shape_[0];
index_t channel_num = in_grad.shape_[1];
index_t rest_size = total_size / (batch_size * channel_num);
const Shape<3> data_shape = Shape3(batch_size, channel_num, rest_size);
// Get tensors
Stream<xpu> *s = ctx.get_stream<xpu>();
Expand Down
12 changes: 12 additions & 0 deletions tests/nightly/test_large_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,17 @@ def check_softmax_output():
expected_grad_out[k] = -1
assert np.isclose(grad_out - softmax_out, expected_grad_out).all()

def check_softmax_activation():
data = nd.random_normal(shape=(2**29, 2, 2, 2))
out = nd.random_normal(shape=(2**29, 2, 2, 2))

res = nd.SoftmaxActivation(data=data, out=out)

assert res.shape[0] == 536870912
assert res.shape[1] == 2
assert res.shape[2] == 2
assert res.shape[3] == 2

def np_softmax(x, axis=-1, temperature=1.0):
x = x - np.max(x, axis=axis, keepdims=True)
x = np.exp(x/temperature)
Expand Down Expand Up @@ -450,6 +461,7 @@ def npy_instance_norm(data, gamma, beta, axis, eps=1E-5):
check_softmax()
check_softmax_cross_entropy()
check_softmax_output()
check_softmax_activation()
check_log_softmax()
check_leaky_relu()
check_pooling()
Expand Down

0 comments on commit 4be5fff

Please sign in to comment.