Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Boolean Rings #1146

Merged
merged 6 commits into from
Sep 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions Cubical/Algebra/BooleanRing.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
{-# OPTIONS --safe #-}
module Cubical.Algebra.BooleanRing where

open import Cubical.Algebra.BooleanRing.Base public
251 changes: 251 additions & 0 deletions Cubical/Algebra/BooleanRing/Base.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
{-# OPTIONS --safe #-}
module Cubical.Algebra.BooleanRing.Base where

open import Cubical.Foundations.Prelude hiding (_∧_;_∨_)
open import Cubical.Foundations.Structure
open import Cubical.Data.Empty as ⊥
open import Cubical.Algebra.Ring
open import Cubical.Algebra.AbGroup.Base
open import Cubical.Algebra.CommRing
open import Cubical.Tactics.CommRingSolver


private
variable
ℓ ℓ' : Level

record IsBooleanRing {B : Type ℓ}
(𝟘 𝟙 : B) (_+_ _·_ : B → B → B) (-_ : B → B) : Type ℓ where
no-eta-equality

Freek98 marked this conversation as resolved.
Show resolved Hide resolved
field
isCommRing : IsCommRing 𝟘 𝟙 _+_ _·_ -_
·Idem : (x : B) → x · x ≡ x

open IsCommRing isCommRing public

record BooleanStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
field
𝟘 : A
𝟙 : A
_+_ : A → A → A
_·_ : A → A → A
-_ : A → A
isBooleanRing : IsBooleanRing 𝟘 𝟙 _+_ _·_ -_

infix 8 -_
infixl 7 _·_
infixl 6 _+_

open IsBooleanRing isBooleanRing public

BooleanRing : ∀ ℓ → Type (ℓ-suc ℓ)
BooleanRing ℓ = TypeWithStr ℓ BooleanStr

BooleanStr→CommRingStr : { A : Type ℓ } → BooleanStr A → CommRingStr A
BooleanStr→CommRingStr x = record { isCommRing = IsBooleanRing.isCommRing (BooleanStr.isBooleanRing x) }

BooleanRing→CommRing : BooleanRing ℓ → CommRing ℓ
BooleanRing→CommRing (carrier , structure ) = carrier , BooleanStr→CommRingStr structure

module BooleanAlgebraStr (A : BooleanRing ℓ) where
open BooleanStr (A . snd)
_∨_ : ⟨ A ⟩ → ⟨ A ⟩ → ⟨ A ⟩
Freek98 marked this conversation as resolved.
Show resolved Hide resolved
a ∨ b = (a + b) + (a · b)
_∧_ : ⟨ A ⟩ → ⟨ A ⟩ → ⟨ A ⟩
a ∧ b = a · b
¬_ : ⟨ A ⟩ → ⟨ A ⟩
¬ a = 𝟙 + a

infix 8 ¬_
infixl 7 _∧_
infixl 6 _∨_

variable x y z : ⟨ A ⟩
Freek98 marked this conversation as resolved.
Show resolved Hide resolved

∧Idem : x ∧ x ≡ x
∧Idem = ·Idem _

∧Assoc : x ∧ ( y ∧ z ) ≡ ( x ∧ y ) ∧ z
∧Assoc = ·Assoc _ _ _

∧Comm : x ∧ y ≡ y ∧ x
∧Comm = ·Comm _ _

∨Assoc : (x ∨ ( y ∨ z ) ≡ ( x ∨ y ) ∨ z )
Freek98 marked this conversation as resolved.
Show resolved Hide resolved
∨Assoc = solve! (BooleanRing→CommRing A)

∨Comm : x ∨ y ≡ y ∨ x
∨Comm = solve! (BooleanRing→CommRing A)

∨IdR : x ∨ 𝟘 ≡ x
∨IdR = solve! (BooleanRing→CommRing A)

∨IdL : 𝟘 ∨ x ≡ x
∨IdL = solve! (BooleanRing→CommRing A)

∧IdR : x ∧ 𝟙 ≡ x
∧IdR = ·IdR _

∧IdL : 𝟙 ∧ x ≡ x
∧IdL = ·IdL _

∧AnnihilR : x ∧ 𝟘 ≡ 𝟘
∧AnnihilR = RingTheory.0RightAnnihilates (CommRing→Ring (BooleanRing→CommRing A)) _

∧AnnihilL : 𝟘 ∧ x ≡ 𝟘
∧AnnihilL = RingTheory.0LeftAnnihilates (CommRing→Ring (BooleanRing→CommRing A)) _

-IsId : x + x ≡ 𝟘
-IsId {x = x} = RingTheory.+Idempotency→0 (CommRing→Ring (BooleanRing→CommRing A)) (x + x) 2x≡4x
where
2x≡4x : x + x ≡ (x + x) + (x + x)
2x≡4x =
x + x
≡⟨ sym (·Idem (x + x)) ⟩
(x + x) · (x + x)
≡⟨ solve! (BooleanRing→CommRing A) ⟩
((x · x) + (x · x)) + ((x · x) + (x · x))
≡⟨ cong₂ _+_ (cong₂ _+_ (·Idem x) (·Idem x)) (cong₂ _+_ (·Idem x) (·Idem x)) ⟩
(x + x) + (x + x) ∎

∨Idem : x ∨ x ≡ x
∨Idem { x = x } =
x + x + x · x
≡⟨ cong (λ y → y + x · x) -IsId ⟩
𝟘 + x · x
≡⟨ +IdL (x · x) ⟩
x · x
≡⟨ ·Idem x ⟩
x ∎

1Absorbs∨R : x ∨ 𝟙 ≡ 𝟙
1Absorbs∨R {x = x} =
(x + 𝟙) + (x · 𝟙)
≡⟨ solve! (BooleanRing→CommRing A) ⟩
𝟙 + (x + x)
≡⟨ cong (λ y → 𝟙 + y) -IsId ⟩
𝟙 + 𝟘
≡⟨ +IdR 𝟙 ⟩
𝟙 ∎

1Absorbs∨L : 𝟙 ∨ x ≡ 𝟙
1Absorbs∨L {x = x} = ∨Comm ∙ 1Absorbs∨R

∧DistR∨ : x ∧ ( y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z)
∧DistR∨ {x = x} {y = y} { z = z} =
x · ((y + z) + (y · z))
≡⟨ solve! (BooleanRing→CommRing A) ⟩
x · y + x · z + x · (y · z)
≡⟨ cong (λ a → x · y + x · z + a · (y · z)) (sym (·Idem x)) ⟩
x · y + x · z + x · x · (y · z)
≡⟨ solve! (BooleanRing→CommRing A) ⟩
x · y + x · z + (x · y) · (x · z) ∎

∧DistL∨ : (x ∨ y) ∧ z ≡ (x ∧ z) ∨ (y ∧ z)
∧DistL∨ = ∧Comm ∙ ∧DistR∨ ∙ cong₂ _∨_ ∧Comm ∧Comm

∨DistR∧ : x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z)
∨DistR∧ {x = x} {y = y} {z = z} =
x + (y · z) + x · (y · z)
≡⟨ solve! (BooleanRing→CommRing A) ⟩
x + 𝟘 + 𝟘 + y · z + 𝟘 + x · y · z
≡⟨ cong (λ a → a + 𝟘 + 𝟘 + y · z + 𝟘 + a · y · z) (sym (·Idem x)) ⟩
x · x + 𝟘 + 𝟘 + y · z + 𝟘 + x · x · y · z
≡⟨ cong (λ a → x · x + 𝟘 + 𝟘 + y · z + a + x · x · y · z) (sym (-IsId {x = (x · y) · z})) ⟩
x · x + 𝟘 + 𝟘 + y · z + (x · y · z + x · y · z) + x · x · y · z
≡⟨ (cong₂ (λ a b → x · x + a + b + y · z + (x · y · z + x · y · z) + x · x · y · z)) (xa-xxa≡0 z) (xa-xxa≡0 y) ⟩
x · x + (x · z + x · x · z) + (x · y + x · x · y) + y · z + (x · y · z + x · y · z) + x · x · y · z
≡⟨ solve! (BooleanRing→CommRing A) ⟩
(x + y + x · y) · (x + z + x · z) ∎ where
xa≡xxa : (a : ⟨ A ⟩) → x · a ≡ (x · x ) · a
xa≡xxa a = cong (λ y → y · a) (sym (·Idem x))
xa-xxa≡0 : (a : ⟨ A ⟩) → 𝟘 ≡ x · a + x · x · a
xa-xxa≡0 a =
𝟘
≡⟨ sym -IsId ⟩
x · a + x · a
≡⟨ cong (λ y → x · a + y · a) (sym (·Idem x)) ⟩
x · a + x · x · a ∎

∨Distr∧R : (x ∧ y) ∨ z ≡ (x ∨ z) ∧ (y ∨ z)
∨Distr∧R = ∨Comm ∙ ∨DistR∧ ∙ cong₂ _∧_ ∨Comm ∨Comm

∧AbsorbL∨ : x ∧ (x ∨ y) ≡ x
∧AbsorbL∨ {x = x} {y = y} =
x · ((x + y) + (x · y))
≡⟨ solve! (BooleanRing→CommRing A) ⟩
x · x + (x · y + x · x · y)
≡⟨ cong (λ z → z + ((x · y) + (z · y))) (·Idem x) ⟩
x + (x · y + x · y)
≡⟨ cong (_+_ x) -IsId ⟩
x + 𝟘
≡⟨ +IdR x ⟩
x ∎

∨AbsorbL∧ : x ∨ (x ∧ y) ≡ x
∨AbsorbL∧ {x = x} { y = y} =
x + x · y + x · (x · y)
≡⟨ solve! (BooleanRing→CommRing A) ⟩
x + (x · y + x · x · y)
≡⟨ cong (λ z → x + (x · y + z · y)) (·Idem x) ⟩
x + (x · y + x · y)
≡⟨ cong (_+_ x) -IsId ⟩
x + 𝟘
≡⟨ +IdR x ⟩
x ∎

¬Cancels∧R : x ∧ ¬ x ≡ 𝟘
¬Cancels∧R {x = x} =
x · (𝟙 + x)
≡⟨ solve! (BooleanRing→CommRing A) ⟩
x + x · x
≡⟨ cong (λ y → x + y) (·Idem x) ⟩
x + x
≡⟨ -IsId ⟩
𝟘 ∎

¬Cancels∧L : ¬ x ∧ x ≡ 𝟘
¬Cancels∧L = ∧Comm ∙ ¬Cancels∧R

¬Completes∨R : x ∨ ¬ x ≡ 𝟙
¬Completes∨R {x = x} =
x + ¬ x + (x ∧ ¬ x)
≡⟨ cong (λ z → x + ¬ x + z) ¬Cancels∧R ⟩
x + ¬ x + 𝟘
≡⟨ solve! (BooleanRing→CommRing A) ⟩
x ∨ 𝟙
≡⟨ 1Absorbs∨R ⟩
𝟙 ∎

¬Completes∨L : (¬ x) ∨ x ≡ 𝟙
¬Completes∨L = ∨Comm ∙ ¬Completes∨R

¬Invol : ¬ ¬ x ≡ x
¬Invol {x = x} =
𝟙 + (𝟙 + x)
≡⟨ +Assoc 𝟙 𝟙 x ⟩
(𝟙 + 𝟙) + x
≡⟨ cong (λ y → y + x) ( -IsId {x = 𝟙}) ⟩
𝟘 + x
≡⟨ +IdL x ⟩
x ∎

¬0≡1 : ¬ 𝟘 ≡ 𝟙
¬0≡1 = +IdR 𝟙

¬1≡0 : ¬ 𝟙 ≡ 𝟘
¬1≡0 = -IsId {x = 𝟙}

DeMorgan¬∨ : ¬ (x ∨ y) ≡ ¬ x ∧ ¬ y
DeMorgan¬∨ = solve! (BooleanRing→CommRing A)

DeMorgan¬∧ : ¬ (x ∧ y) ≡ ¬ x ∨ ¬ y
DeMorgan¬∧ {x = x} {y = y} =
𝟙 + x · y
≡⟨ solve! (BooleanRing→CommRing A) ⟩
𝟘 + 𝟘 + 𝟙 + x · y
≡⟨ cong₂ (λ a b → ((a + b) + 𝟙) + (x · y)) (sym (-IsId {x = 𝟙 + x})) (sym (-IsId {x = y})) ⟩
((𝟙 + x) + (𝟙 + x)) + (y + y) + 𝟙 + x · y
≡⟨ solve! (BooleanRing→CommRing A) ⟩
¬ x ∨ ¬ y ∎
Loading