-
Notifications
You must be signed in to change notification settings - Fork 141
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add Boolean Rings * Changed To to an arrow per Felix' comment. * Removed superfluous brackets per Felix' comment. * missed on parenthesis. * Changed names to comply with NAMING.md * Added fixities for /\,\/ and neg and removed parentheses
- Loading branch information
Showing
2 changed files
with
255 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
{-# OPTIONS --safe #-} | ||
module Cubical.Algebra.BooleanRing where | ||
|
||
open import Cubical.Algebra.BooleanRing.Base public |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,251 @@ | ||
{-# OPTIONS --safe #-} | ||
module Cubical.Algebra.BooleanRing.Base where | ||
|
||
open import Cubical.Foundations.Prelude hiding (_∧_;_∨_) | ||
open import Cubical.Foundations.Structure | ||
open import Cubical.Data.Empty as ⊥ | ||
open import Cubical.Algebra.Ring | ||
open import Cubical.Algebra.AbGroup.Base | ||
open import Cubical.Algebra.CommRing | ||
open import Cubical.Tactics.CommRingSolver | ||
|
||
|
||
private | ||
variable | ||
ℓ ℓ' : Level | ||
|
||
record IsBooleanRing {B : Type ℓ} | ||
(𝟘 𝟙 : B) (_+_ _·_ : B → B → B) (-_ : B → B) : Type ℓ where | ||
no-eta-equality | ||
|
||
field | ||
isCommRing : IsCommRing 𝟘 𝟙 _+_ _·_ -_ | ||
·Idem : (x : B) → x · x ≡ x | ||
|
||
open IsCommRing isCommRing public | ||
|
||
record BooleanStr (A : Type ℓ) : Type (ℓ-suc ℓ) where | ||
field | ||
𝟘 : A | ||
𝟙 : A | ||
_+_ : A → A → A | ||
_·_ : A → A → A | ||
-_ : A → A | ||
isBooleanRing : IsBooleanRing 𝟘 𝟙 _+_ _·_ -_ | ||
|
||
infix 8 -_ | ||
infixl 7 _·_ | ||
infixl 6 _+_ | ||
|
||
open IsBooleanRing isBooleanRing public | ||
|
||
BooleanRing : ∀ ℓ → Type (ℓ-suc ℓ) | ||
BooleanRing ℓ = TypeWithStr ℓ BooleanStr | ||
|
||
BooleanStr→CommRingStr : { A : Type ℓ } → BooleanStr A → CommRingStr A | ||
BooleanStr→CommRingStr x = record { isCommRing = IsBooleanRing.isCommRing (BooleanStr.isBooleanRing x) } | ||
|
||
BooleanRing→CommRing : BooleanRing ℓ → CommRing ℓ | ||
BooleanRing→CommRing (carrier , structure ) = carrier , BooleanStr→CommRingStr structure | ||
|
||
module BooleanAlgebraStr (A : BooleanRing ℓ) where | ||
open BooleanStr (A . snd) | ||
_∨_ : ⟨ A ⟩ → ⟨ A ⟩ → ⟨ A ⟩ | ||
a ∨ b = (a + b) + (a · b) | ||
_∧_ : ⟨ A ⟩ → ⟨ A ⟩ → ⟨ A ⟩ | ||
a ∧ b = a · b | ||
¬_ : ⟨ A ⟩ → ⟨ A ⟩ | ||
¬ a = 𝟙 + a | ||
|
||
infix 8 ¬_ | ||
infixl 7 _∧_ | ||
infixl 6 _∨_ | ||
|
||
variable x y z : ⟨ A ⟩ | ||
|
||
∧Idem : x ∧ x ≡ x | ||
∧Idem = ·Idem _ | ||
|
||
∧Assoc : x ∧ ( y ∧ z ) ≡ ( x ∧ y ) ∧ z | ||
∧Assoc = ·Assoc _ _ _ | ||
|
||
∧Comm : x ∧ y ≡ y ∧ x | ||
∧Comm = ·Comm _ _ | ||
|
||
∨Assoc : (x ∨ ( y ∨ z ) ≡ ( x ∨ y ) ∨ z ) | ||
∨Assoc = solve! (BooleanRing→CommRing A) | ||
|
||
∨Comm : x ∨ y ≡ y ∨ x | ||
∨Comm = solve! (BooleanRing→CommRing A) | ||
|
||
∨IdR : x ∨ 𝟘 ≡ x | ||
∨IdR = solve! (BooleanRing→CommRing A) | ||
|
||
∨IdL : 𝟘 ∨ x ≡ x | ||
∨IdL = solve! (BooleanRing→CommRing A) | ||
|
||
∧IdR : x ∧ 𝟙 ≡ x | ||
∧IdR = ·IdR _ | ||
|
||
∧IdL : 𝟙 ∧ x ≡ x | ||
∧IdL = ·IdL _ | ||
|
||
∧AnnihilR : x ∧ 𝟘 ≡ 𝟘 | ||
∧AnnihilR = RingTheory.0RightAnnihilates (CommRing→Ring (BooleanRing→CommRing A)) _ | ||
|
||
∧AnnihilL : 𝟘 ∧ x ≡ 𝟘 | ||
∧AnnihilL = RingTheory.0LeftAnnihilates (CommRing→Ring (BooleanRing→CommRing A)) _ | ||
|
||
-IsId : x + x ≡ 𝟘 | ||
-IsId {x = x} = RingTheory.+Idempotency→0 (CommRing→Ring (BooleanRing→CommRing A)) (x + x) 2x≡4x | ||
where | ||
2x≡4x : x + x ≡ (x + x) + (x + x) | ||
2x≡4x = | ||
x + x | ||
≡⟨ sym (·Idem (x + x)) ⟩ | ||
(x + x) · (x + x) | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
((x · x) + (x · x)) + ((x · x) + (x · x)) | ||
≡⟨ cong₂ _+_ (cong₂ _+_ (·Idem x) (·Idem x)) (cong₂ _+_ (·Idem x) (·Idem x)) ⟩ | ||
(x + x) + (x + x) ∎ | ||
|
||
∨Idem : x ∨ x ≡ x | ||
∨Idem { x = x } = | ||
x + x + x · x | ||
≡⟨ cong (λ y → y + x · x) -IsId ⟩ | ||
𝟘 + x · x | ||
≡⟨ +IdL (x · x) ⟩ | ||
x · x | ||
≡⟨ ·Idem x ⟩ | ||
x ∎ | ||
|
||
1Absorbs∨R : x ∨ 𝟙 ≡ 𝟙 | ||
1Absorbs∨R {x = x} = | ||
(x + 𝟙) + (x · 𝟙) | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
𝟙 + (x + x) | ||
≡⟨ cong (λ y → 𝟙 + y) -IsId ⟩ | ||
𝟙 + 𝟘 | ||
≡⟨ +IdR 𝟙 ⟩ | ||
𝟙 ∎ | ||
|
||
1Absorbs∨L : 𝟙 ∨ x ≡ 𝟙 | ||
1Absorbs∨L {x = x} = ∨Comm ∙ 1Absorbs∨R | ||
|
||
∧DistR∨ : x ∧ ( y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z) | ||
∧DistR∨ {x = x} {y = y} { z = z} = | ||
x · ((y + z) + (y · z)) | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
x · y + x · z + x · (y · z) | ||
≡⟨ cong (λ a → x · y + x · z + a · (y · z)) (sym (·Idem x)) ⟩ | ||
x · y + x · z + x · x · (y · z) | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
x · y + x · z + (x · y) · (x · z) ∎ | ||
|
||
∧DistL∨ : (x ∨ y) ∧ z ≡ (x ∧ z) ∨ (y ∧ z) | ||
∧DistL∨ = ∧Comm ∙ ∧DistR∨ ∙ cong₂ _∨_ ∧Comm ∧Comm | ||
|
||
∨DistR∧ : x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z) | ||
∨DistR∧ {x = x} {y = y} {z = z} = | ||
x + (y · z) + x · (y · z) | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
x + 𝟘 + 𝟘 + y · z + 𝟘 + x · y · z | ||
≡⟨ cong (λ a → a + 𝟘 + 𝟘 + y · z + 𝟘 + a · y · z) (sym (·Idem x)) ⟩ | ||
x · x + 𝟘 + 𝟘 + y · z + 𝟘 + x · x · y · z | ||
≡⟨ cong (λ a → x · x + 𝟘 + 𝟘 + y · z + a + x · x · y · z) (sym (-IsId {x = (x · y) · z})) ⟩ | ||
x · x + 𝟘 + 𝟘 + y · z + (x · y · z + x · y · z) + x · x · y · z | ||
≡⟨ (cong₂ (λ a b → x · x + a + b + y · z + (x · y · z + x · y · z) + x · x · y · z)) (xa-xxa≡0 z) (xa-xxa≡0 y) ⟩ | ||
x · x + (x · z + x · x · z) + (x · y + x · x · y) + y · z + (x · y · z + x · y · z) + x · x · y · z | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
(x + y + x · y) · (x + z + x · z) ∎ where | ||
xa≡xxa : (a : ⟨ A ⟩) → x · a ≡ (x · x ) · a | ||
xa≡xxa a = cong (λ y → y · a) (sym (·Idem x)) | ||
xa-xxa≡0 : (a : ⟨ A ⟩) → 𝟘 ≡ x · a + x · x · a | ||
xa-xxa≡0 a = | ||
𝟘 | ||
≡⟨ sym -IsId ⟩ | ||
x · a + x · a | ||
≡⟨ cong (λ y → x · a + y · a) (sym (·Idem x)) ⟩ | ||
x · a + x · x · a ∎ | ||
|
||
∨Distr∧R : (x ∧ y) ∨ z ≡ (x ∨ z) ∧ (y ∨ z) | ||
∨Distr∧R = ∨Comm ∙ ∨DistR∧ ∙ cong₂ _∧_ ∨Comm ∨Comm | ||
|
||
∧AbsorbL∨ : x ∧ (x ∨ y) ≡ x | ||
∧AbsorbL∨ {x = x} {y = y} = | ||
x · ((x + y) + (x · y)) | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
x · x + (x · y + x · x · y) | ||
≡⟨ cong (λ z → z + ((x · y) + (z · y))) (·Idem x) ⟩ | ||
x + (x · y + x · y) | ||
≡⟨ cong (_+_ x) -IsId ⟩ | ||
x + 𝟘 | ||
≡⟨ +IdR x ⟩ | ||
x ∎ | ||
|
||
∨AbsorbL∧ : x ∨ (x ∧ y) ≡ x | ||
∨AbsorbL∧ {x = x} { y = y} = | ||
x + x · y + x · (x · y) | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
x + (x · y + x · x · y) | ||
≡⟨ cong (λ z → x + (x · y + z · y)) (·Idem x) ⟩ | ||
x + (x · y + x · y) | ||
≡⟨ cong (_+_ x) -IsId ⟩ | ||
x + 𝟘 | ||
≡⟨ +IdR x ⟩ | ||
x ∎ | ||
|
||
¬Cancels∧R : x ∧ ¬ x ≡ 𝟘 | ||
¬Cancels∧R {x = x} = | ||
x · (𝟙 + x) | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
x + x · x | ||
≡⟨ cong (λ y → x + y) (·Idem x) ⟩ | ||
x + x | ||
≡⟨ -IsId ⟩ | ||
𝟘 ∎ | ||
|
||
¬Cancels∧L : ¬ x ∧ x ≡ 𝟘 | ||
¬Cancels∧L = ∧Comm ∙ ¬Cancels∧R | ||
|
||
¬Completes∨R : x ∨ ¬ x ≡ 𝟙 | ||
¬Completes∨R {x = x} = | ||
x + ¬ x + (x ∧ ¬ x) | ||
≡⟨ cong (λ z → x + ¬ x + z) ¬Cancels∧R ⟩ | ||
x + ¬ x + 𝟘 | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
x ∨ 𝟙 | ||
≡⟨ 1Absorbs∨R ⟩ | ||
𝟙 ∎ | ||
|
||
¬Completes∨L : (¬ x) ∨ x ≡ 𝟙 | ||
¬Completes∨L = ∨Comm ∙ ¬Completes∨R | ||
|
||
¬Invol : ¬ ¬ x ≡ x | ||
¬Invol {x = x} = | ||
𝟙 + (𝟙 + x) | ||
≡⟨ +Assoc 𝟙 𝟙 x ⟩ | ||
(𝟙 + 𝟙) + x | ||
≡⟨ cong (λ y → y + x) ( -IsId {x = 𝟙}) ⟩ | ||
𝟘 + x | ||
≡⟨ +IdL x ⟩ | ||
x ∎ | ||
|
||
¬0≡1 : ¬ 𝟘 ≡ 𝟙 | ||
¬0≡1 = +IdR 𝟙 | ||
|
||
¬1≡0 : ¬ 𝟙 ≡ 𝟘 | ||
¬1≡0 = -IsId {x = 𝟙} | ||
|
||
DeMorgan¬∨ : ¬ (x ∨ y) ≡ ¬ x ∧ ¬ y | ||
DeMorgan¬∨ = solve! (BooleanRing→CommRing A) | ||
|
||
DeMorgan¬∧ : ¬ (x ∧ y) ≡ ¬ x ∨ ¬ y | ||
DeMorgan¬∧ {x = x} {y = y} = | ||
𝟙 + x · y | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
𝟘 + 𝟘 + 𝟙 + x · y | ||
≡⟨ cong₂ (λ a b → ((a + b) + 𝟙) + (x · y)) (sym (-IsId {x = 𝟙 + x})) (sym (-IsId {x = y})) ⟩ | ||
((𝟙 + x) + (𝟙 + x)) + (y + y) + 𝟙 + x · y | ||
≡⟨ solve! (BooleanRing→CommRing A) ⟩ | ||
¬ x ∨ ¬ y ∎ |