A pipeline/template for
- Converting dataset to TFRecords.
- Training and evaluating multi-class image classifier using custom tensorflow estimator.
Tensorflow >= 1.4.0
# Virtual environment (optional)
sudo apt install -y virtualenv
# Tensorflow (optional)
sudo apt-get install python3-pip python3-dev python-virtualenv # for Python 3.n
virtualenv --system-site-packages -p python3 tensorflow170_py35_gpu # for Python 3.n with GPU
source tensorflow170_py35_gpu/bin/activate
easy_install -U pip
pip3 install --upgrade tensorflow-gpu # for Python 3.n and GPU
# Dependencies
pip install matplotlib
pip install bunch
pip install pudb
pip install tqdm
Download knifey-spoony dataset
cd scripts
./download_dataset_knifey_spoony.sh
./run.sh
- Place the new dataset inside datasets folder. Images of each class should be in be in different folder.
Example:
datasets
knifey_spoony_vanilla
train
forky
knifey
spoony
test
forky
knifey
spoony
-
Modify configs/config_knifey_spoony.json "labels", "dataset_path_train" and "dataset_path_test" fields.
-
Modify models/model_knifey_spoony.py model_fn() as per requirement.
-
./run.sh
/~https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/18_TFRecords_Dataset_API.ipynb