This is a project to evaluate the performance of different fine-tuned neural ASR systems.
- Model Inference Time
- Word error rate (WER)
- Match error rate (MER)
- Word information Preserved (WIP)
- Character error rate (CER)
- OpenAI Whisper Large
- arbml/whisper-largev2-ar
- tarteel-ai/whisper-base-ar-quran
- tarteel-ai/whisper-tiny-ar-quran
- Assuming Conda is installed, create a new conda environment:
conda create -n quranwhisper python=3.10
conda activate quranwhisper
- Install the required packages:
pip install -r requirements.txt
- Add the recitation audio files in the root directory of the project, as shown below:
.
├── ...
├── recitations
│ ├── aya1.wav
│ ├── aya2.wav
│ └── ...
└── ...