forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added performance benchmakrs for Eager Dygraph (PaddlePaddle#37643)
- Loading branch information
1 parent
6cb0bba
commit f0e35c4
Showing
4 changed files
with
842 additions
and
0 deletions.
There are no files selected for viewing
180 changes: 180 additions & 0 deletions
180
paddle/fluid/eager/tests/performance_tests/benchmark_eager_cpu.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
// Eager Dygraph | ||
|
||
#include <chrono> | ||
|
||
#include "gtest/gtest.h" | ||
#include "paddle/fluid/platform/flags.h" | ||
|
||
#include "paddle/fluid/eager/api/all.h" | ||
#include "paddle/fluid/eager/autograd_meta.h" | ||
#include "paddle/fluid/eager/backward.h" | ||
|
||
#include "paddle/fluid/imperative/tracer.h" | ||
|
||
#include "paddle/fluid/eager/tests/benchmark/benchmark_utils.h" | ||
#include "paddle/fluid/eager/tests/test_utils.h" | ||
|
||
#ifdef WITH_GPERFTOOLS | ||
#include "gperftools/profiler.h" | ||
#endif | ||
|
||
// TODO(jiabin): remove nolint here!!! | ||
using namespace egr; // NOLINT | ||
|
||
// Disable pten path | ||
DECLARE_bool(run_pten_kernel); | ||
|
||
TEST(Benchmark, Init) { FLAGS_run_pten_kernel = false; } | ||
|
||
TEST(Benchmark, EagerScaleCPU) { | ||
// Prepare Device Contexts | ||
egr::InitEnv(paddle::platform::CPUPlace()); | ||
|
||
for (const std::string& mode : {"Accuracy", "Performance"}) { | ||
paddle::framework::DDim ddim = paddle::framework::make_ddim({2, 4, 4, 4}); | ||
egr::EagerTensor tensor = EagerUtils::CreateTensorWithValue( | ||
ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, 5.0, true); | ||
RetainGradForTensor(tensor); | ||
|
||
if (mode == "Accuracy") { | ||
benchmark_eager_scale(tensor, true /* accuracy_check*/); | ||
|
||
} else if (mode == "Performance") { | ||
auto t_start = std::chrono::high_resolution_clock::now(); | ||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStart("eager_scale_cpu.out"); | ||
#endif | ||
benchmark_eager_scale(tensor); | ||
|
||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStop(); | ||
#endif | ||
auto t_end = std::chrono::high_resolution_clock::now(); | ||
double elapsed_time_ms = | ||
std::chrono::duration<double, std::milli>(t_end - t_start).count(); | ||
|
||
std::cout << "Duration: " << elapsed_time_ms << " ms" << std::endl; | ||
|
||
} else { | ||
PADDLE_THROW(paddle::platform::errors::Fatal("Unknown benchmark mode")); | ||
} | ||
} | ||
} | ||
|
||
TEST(Benchmark, EagerIntermediateMatmulCPU) { | ||
// Prepare Device Contexts | ||
InitEnv(paddle::platform::CPUPlace()); | ||
|
||
auto tracer = std::make_shared<paddle::imperative::Tracer>(); | ||
paddle::imperative::SetCurrentTracer(tracer); | ||
|
||
for (const std::string& mode : {"Accuracy", "Performance"}) { | ||
paddle::framework::DDim ddimX = paddle::framework::make_ddim({2, 2}); | ||
egr::EagerTensor X = EagerUtils::CreateTensorWithValue( | ||
ddimX, paddle::platform::CPUPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, 1.0, true); | ||
RetainGradForTensor(X); | ||
|
||
paddle::framework::DDim ddimY = paddle::framework::make_ddim({2, 2}); | ||
egr::EagerTensor Y = EagerUtils::CreateTensorWithValue( | ||
ddimY, paddle::platform::CPUPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, 2.0, true); | ||
RetainGradForTensor(Y); | ||
|
||
if (mode == "Accuracy") { | ||
benchmark_eager_intermediate_matmul(X, Y, true /* accuracy_check */); | ||
|
||
} else if (mode == "Performance") { | ||
auto t_start = std::chrono::high_resolution_clock::now(); | ||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStart("eager_intermediate_matmul_cpu.out"); | ||
#endif | ||
benchmark_eager_intermediate_matmul(X, Y); | ||
|
||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStop(); | ||
#endif | ||
auto t_end = std::chrono::high_resolution_clock::now(); | ||
double elapsed_time_ms = | ||
std::chrono::duration<double, std::milli>(t_end - t_start).count(); | ||
std::cout << "Duration: " << elapsed_time_ms << " ms" << std::endl; | ||
|
||
} else { | ||
PADDLE_THROW(paddle::platform::errors::Fatal("Unknown benchmark mode")); | ||
} | ||
} | ||
} | ||
|
||
TEST(Benchmark, EagerIntermediateMLPCPU) { | ||
// Prepare Device Contexts | ||
InitEnv(paddle::platform::CPUPlace()); | ||
|
||
auto tracer = std::make_shared<paddle::imperative::Tracer>(); | ||
paddle::imperative::SetCurrentTracer(tracer); | ||
|
||
for (const std::string& mode : {"Accuracy", "Performance"}) { | ||
paddle::framework::DDim ddimX = | ||
paddle::framework::make_ddim({MLP_M, MLP_N}); | ||
egr::EagerTensor X = EagerUtils::CreateTensorWithValue( | ||
ddimX, paddle::platform::CPUPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, MLP_X_VAL, true); | ||
RetainGradForTensor(X); | ||
|
||
std::vector<EagerTensor> Ws; | ||
std::vector<EagerTensor> Bs; | ||
for (size_t i = 0; i < MLP_NUM_LINEAR; i++) { | ||
paddle::framework::DDim ddimW = | ||
paddle::framework::make_ddim({MLP_N, MLP_K}); | ||
egr::EagerTensor W = EagerUtils::CreateTensorWithValue( | ||
ddimW, paddle::platform::CPUPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, MLP_W_VAL, true); | ||
RetainGradForTensor(W); | ||
|
||
paddle::framework::DDim ddimB = paddle::framework::make_ddim({MLP_K}); | ||
egr::EagerTensor B = EagerUtils::CreateTensorWithValue( | ||
ddimB, paddle::platform::CPUPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, MLP_B_VAL, true); | ||
RetainGradForTensor(B); | ||
|
||
Ws.emplace_back(std::move(W)); | ||
Bs.emplace_back(std::move(B)); | ||
} | ||
|
||
if (mode == "Accuracy") { | ||
benchmark_eager_intermediate_mlp(X, Ws, Bs, true /* accuracy_check */); | ||
|
||
} else if (mode == "Performance") { | ||
auto t_start = std::chrono::high_resolution_clock::now(); | ||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStart("eager_intermediate_mlp_cpu.out"); | ||
#endif | ||
benchmark_eager_intermediate_mlp(X, Ws, Bs); | ||
|
||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStop(); | ||
#endif | ||
auto t_end = std::chrono::high_resolution_clock::now(); | ||
double elapsed_time_ms = | ||
std::chrono::duration<double, std::milli>(t_end - t_start).count(); | ||
std::cout << "Duration: " << elapsed_time_ms << " ms" << std::endl; | ||
|
||
} else { | ||
PADDLE_THROW(paddle::platform::errors::Fatal("Unknown benchmark mode")); | ||
} | ||
} | ||
} |
187 changes: 187 additions & 0 deletions
187
paddle/fluid/eager/tests/performance_tests/benchmark_eager_cuda.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
// Eager Dygraph | ||
#include <chrono> | ||
|
||
#include "gtest/gtest.h" | ||
#include "paddle/fluid/platform/flags.h" | ||
|
||
#include "paddle/fluid/eager/api/all.h" | ||
#include "paddle/fluid/eager/autograd_meta.h" | ||
#include "paddle/fluid/eager/backward.h" | ||
|
||
#include "paddle/fluid/imperative/tracer.h" | ||
|
||
#include "paddle/fluid/eager/tests/benchmark/benchmark_utils.h" | ||
#include "paddle/fluid/eager/tests/test_utils.h" | ||
|
||
#ifdef WITH_GPERFTOOLS | ||
#include "gperftools/profiler.h" | ||
#endif | ||
|
||
// TODO(jiabin): remove nolint here!!! | ||
using namespace egr; // NOLINT | ||
|
||
DECLARE_bool(run_pten_kernel); | ||
|
||
TEST(Benchmark, Init) { FLAGS_run_pten_kernel = false; } | ||
|
||
TEST(Benchmark, EagerScaleCUDA) { | ||
egr::InitEnv(paddle::platform::CUDAPlace()); | ||
|
||
for (const std::string& mode : {"Accuracy", "WarmUp", "Performance"}) { | ||
paddle::framework::DDim ddim = paddle::framework::make_ddim({2, 4, 4, 4}); | ||
egr::EagerTensor tensor = EagerUtils::CreateTensorWithValue( | ||
ddim, paddle::platform::CUDAPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, 5.0 /*value*/, true /*is_leaf*/); | ||
RetainGradForTensor(tensor); | ||
|
||
if (mode == "Accuracy") { | ||
benchmark_eager_scale(tensor, true /* accuracy_check */); | ||
|
||
} else if (mode == "WarmUp") { | ||
benchmark_eager_scale(tensor); | ||
|
||
} else if (mode == "Performance") { | ||
auto t_start = std::chrono::high_resolution_clock::now(); | ||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStart("eager_scale_cuda.out"); | ||
#endif | ||
benchmark_eager_scale(tensor); | ||
|
||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStop(); | ||
#endif | ||
auto t_end = std::chrono::high_resolution_clock::now(); | ||
double elapsed_time_ms = | ||
std::chrono::duration<double, std::milli>(t_end - t_start).count(); | ||
std::cout << "Duration: " << elapsed_time_ms << " ms" << std::endl; | ||
|
||
} else { | ||
PADDLE_THROW(paddle::platform::errors::Fatal("Unknown benchmark mode")); | ||
} | ||
} | ||
} | ||
|
||
TEST(Benchmark, EagerIntermediateMatmulCUDA) { | ||
paddle::platform::CUDAPlace place; | ||
egr::InitEnv(place); | ||
|
||
auto tracer = std::make_shared<paddle::imperative::Tracer>(); | ||
tracer->SetExpectedPlace(place); | ||
paddle::imperative::SetCurrentTracer(tracer); | ||
|
||
for (const std::string& mode : {"Accuracy", "WarmUp", "Performance"}) { | ||
paddle::framework::DDim ddimX = paddle::framework::make_ddim({2, 2}); | ||
egr::EagerTensor X = EagerUtils::CreateTensorWithValue( | ||
ddimX, paddle::platform::CUDAPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, 1.0, true); | ||
RetainGradForTensor(X); | ||
|
||
paddle::framework::DDim ddimY = paddle::framework::make_ddim({2, 2}); | ||
egr::EagerTensor Y = EagerUtils::CreateTensorWithValue( | ||
ddimY, paddle::platform::CUDAPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, 2.0, true); | ||
RetainGradForTensor(Y); | ||
|
||
if (mode == "Accuracy") { | ||
benchmark_eager_intermediate_matmul(X, Y, true /* accuracy_check */); | ||
|
||
} else if (mode == "WarmUp") { | ||
benchmark_eager_intermediate_matmul(X, Y); | ||
|
||
} else if (mode == "Performance") { | ||
auto t_start = std::chrono::high_resolution_clock::now(); | ||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStart("eager_intermediate_matmul_cuda.out"); | ||
#endif | ||
benchmark_eager_intermediate_matmul(X, Y); | ||
|
||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStop(); | ||
#endif | ||
auto t_end = std::chrono::high_resolution_clock::now(); | ||
double elapsed_time_ms = | ||
std::chrono::duration<double, std::milli>(t_end - t_start).count(); | ||
std::cout << "Duration: " << elapsed_time_ms << " ms" << std::endl; | ||
|
||
} else { | ||
PADDLE_THROW(paddle::platform::errors::Fatal("Unknown benchmark mode")); | ||
} | ||
} | ||
} | ||
|
||
TEST(Benchmark, EagerIntermediateMLPCUDA) { | ||
paddle::platform::CUDAPlace place; | ||
egr::InitEnv(place); | ||
|
||
auto tracer = std::make_shared<paddle::imperative::Tracer>(); | ||
tracer->SetExpectedPlace(place); | ||
paddle::imperative::SetCurrentTracer(tracer); | ||
|
||
for (const std::string& mode : {"Accuracy", "WarmUp", "Performance"}) { | ||
paddle::framework::DDim ddimX = | ||
paddle::framework::make_ddim({MLP_M, MLP_N}); | ||
egr::EagerTensor X = EagerUtils::CreateTensorWithValue( | ||
ddimX, paddle::platform::CUDAPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, MLP_X_VAL, true); | ||
RetainGradForTensor(X); | ||
|
||
std::vector<EagerTensor> Ws; | ||
std::vector<EagerTensor> Bs; | ||
for (size_t i = 0; i < MLP_NUM_LINEAR; i++) { | ||
paddle::framework::DDim ddimW = | ||
paddle::framework::make_ddim({MLP_N, MLP_K}); | ||
egr::EagerTensor W = EagerUtils::CreateTensorWithValue( | ||
ddimW, paddle::platform::CUDAPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, MLP_W_VAL, true); | ||
RetainGradForTensor(W); | ||
|
||
paddle::framework::DDim ddimB = paddle::framework::make_ddim({MLP_K}); | ||
egr::EagerTensor B = EagerUtils::CreateTensorWithValue( | ||
ddimB, paddle::platform::CUDAPlace(), pten::DataType::FLOAT32, | ||
pten::DataLayout::NCHW, MLP_B_VAL, true); | ||
RetainGradForTensor(B); | ||
|
||
Ws.emplace_back(std::move(W)); | ||
Bs.emplace_back(std::move(B)); | ||
} | ||
|
||
if (mode == "Accuracy") { | ||
benchmark_eager_intermediate_mlp(X, Ws, Bs, true /* accuracy_check */); | ||
|
||
} else if (mode == "WarmUp") { | ||
benchmark_eager_intermediate_mlp(X, Ws, Bs); | ||
|
||
} else if (mode == "Performance") { | ||
auto t_start = std::chrono::high_resolution_clock::now(); | ||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStart("eager_intermediate_mlp_cuda.out"); | ||
#endif | ||
benchmark_eager_intermediate_mlp(X, Ws, Bs); | ||
|
||
#ifdef WITH_GPERFTOOLS | ||
ProfilerStop(); | ||
#endif | ||
auto t_end = std::chrono::high_resolution_clock::now(); | ||
double elapsed_time_ms = | ||
std::chrono::duration<double, std::milli>(t_end - t_start).count(); | ||
std::cout << "Duration: " << elapsed_time_ms << " ms" << std::endl; | ||
|
||
} else { | ||
PADDLE_THROW(paddle::platform::errors::Fatal("Unknown benchmark mode")); | ||
} | ||
} | ||
} |
Oops, something went wrong.