forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added RunBackward and HookUtils to Eager Dygraph (PaddlePaddle#37599)
- Loading branch information
1 parent
8f0a578
commit 0d32f7e
Showing
13 changed files
with
997 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
add_subdirectory(utils) | ||
add_subdirectory(generated) | ||
|
||
cc_library(eager_api SRCS all.cc DEPS global_utils eager_scale) | ||
cc_library(eager_api SRCS all.cc DEPS tensor_utils hook_utils global_utils eager_scale) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
cc_library(tensor_utils SRCS tensor_utils.cc DEPS pten pten_api autograd_meta grad_node_info accumulation_node) | ||
cc_library(hook_utils SRCS hook_utils.cc DEPS pten tensor_utils autograd_meta grad_node_info utils accumulation_node) | ||
cc_library(global_utils SRCS global_utils.cc DEPS place) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/eager/api/utils/hook_utils.h" | ||
#include "paddle/fluid/eager/accumulation/accumulation_node.h" | ||
#include "paddle/fluid/eager/api/utils/tensor_utils.h" | ||
#include "paddle/fluid/eager/autograd_meta.h" | ||
#include "paddle/fluid/eager/utils.h" | ||
#include "paddle/pten/core/dense_tensor.h" | ||
|
||
namespace egr { | ||
|
||
void RegisterGradientHookForTensor( | ||
const egr::EagerTensor& tensor, | ||
std::function<egr::EagerTensor(const egr::EagerTensor&)>& hook) { | ||
// Find grad_node and out_rank from AutogradMeta | ||
std::shared_ptr<GradNodeBase> grad_node = EagerUtils::grad_node(tensor); | ||
auto rank_info = EagerUtils::unsafe_autograd_meta(tensor)->OutRankInfo(); | ||
|
||
grad_node->RegisterGradientHook(rank_info.first, rank_info.second, hook); | ||
} | ||
|
||
void RegisterReduceHookForTensor(const egr::EagerTensor& tensor, | ||
const std::function<void(void)>& hook) { | ||
// Find grad_node and out_rank from AutogradMeta | ||
std::shared_ptr<GradNodeBase> grad_node = EagerUtils::grad_node(tensor); | ||
|
||
grad_node->RegisterReduceHook(hook); | ||
} | ||
|
||
void RetainGradForTensor(const egr::EagerTensor& tensor) { | ||
// TODO(jiabin): Support More Tensor type here | ||
AutogradMeta* meta = EagerUtils::unsafe_autograd_meta(tensor); | ||
egr::EagerTensor* grad_tensor = meta->MutableGrad(); | ||
|
||
// Define Hook | ||
std::function<egr::EagerTensor(const egr::EagerTensor&)> hook = | ||
[grad_tensor](const egr::EagerTensor& t) { | ||
if (!grad_tensor) { | ||
PADDLE_THROW(paddle::platform::errors::Fatal( | ||
"Detected null grad_tensor." | ||
"Grad tensor in AutogradMeta of should not be nullptr")); | ||
} | ||
if (t.defined()) { | ||
// Simply Copy impl() to grad_tensor | ||
grad_tensor->set_impl(t.impl()); | ||
return *grad_tensor; | ||
} else { | ||
PADDLE_ENFORCE_EQ( | ||
t.Var().IsInitialized(), true, | ||
paddle::platform::errors::Fatal( | ||
"Detected uninitialized variable, causing segmentation fault " | ||
"inside the hook." | ||
"Variable %s has to be initialized while we need to set it." | ||
"please check tensor initialization status.", | ||
t.name())); | ||
grad_tensor->MutableVar() | ||
->GetMutable<paddle::framework::LoDTensor>() | ||
->ShareDataWith(t.Var().Get<paddle::framework::LoDTensor>()); | ||
return *grad_tensor; | ||
} | ||
}; | ||
|
||
if (IsLeafTensor(tensor)) { | ||
// Add RetainGrad as PostHook to AccumulationNode | ||
std::shared_ptr<GradNodeBase> grad_node = EagerUtils::grad_node(tensor); | ||
PADDLE_ENFORCE( | ||
grad_node.get() != nullptr, | ||
paddle::platform::errors::Fatal("Detected NULL grad_node" | ||
"Leaf tensor should have had grad_node " | ||
"with type: GradNodeAccumulation")); | ||
auto accumulation_grad_node = | ||
std::dynamic_pointer_cast<GradNodeAccumulation>(grad_node); | ||
accumulation_grad_node->RetainGrad(hook); | ||
|
||
} else { | ||
// Append to GradientHooks | ||
RegisterGradientHookForTensor(tensor, hook); | ||
} | ||
} | ||
|
||
} // namespace egr |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#pragma once | ||
|
||
#include "paddle/fluid/eager/eager_tensor.h" | ||
#include "paddle/fluid/eager/grad_node_info.h" | ||
#include "paddle/pten/api/all.h" | ||
namespace egr { | ||
|
||
void RegisterGradientHookForTensor( | ||
const egr::EagerTensor& tensor, | ||
std::function<egr::EagerTensor(const egr::EagerTensor&)>& hook); | ||
|
||
void RegisterReduceHookForTensor(const egr::EagerTensor& tensor, | ||
const std::function<void(void)>& hook); | ||
void RetainGradForTensor(const egr::EagerTensor& tensor); | ||
|
||
} // namespace egr |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/eager/backward.h" | ||
#include <queue> | ||
|
||
#include "paddle/fluid/eager/autograd_meta.h" | ||
#include "paddle/fluid/eager/grad_node_info.h" | ||
#include "paddle/fluid/eager/grad_tensor_holder.h" | ||
#include "paddle/fluid/eager/utils.h" | ||
|
||
#include "paddle/fluid/platform/enforce.h" | ||
#include "paddle/fluid/platform/errors.h" | ||
|
||
#include "glog/logging.h" | ||
|
||
namespace egr { | ||
|
||
std::unordered_map<GradNodeBase*, int> getInDegreeMap( | ||
const std::queue<GradNodeBase*>& init_queue) { | ||
// Calculate in_degree for each node | ||
// We can completely remove this pass, if in_degree were set during forward | ||
// pass | ||
std::unordered_map<GradNodeBase*, int> node_in_degree_map; | ||
|
||
// Copy nodes | ||
std::queue<GradNodeBase*> queue = init_queue; | ||
std::unordered_set<GradNodeBase*> visited; | ||
|
||
// Visit each node exactly once in any order | ||
while (!queue.empty()) { | ||
GradNodeBase* node = queue.front(); | ||
queue.pop(); | ||
|
||
if (visited.count(node)) { | ||
continue; | ||
} | ||
visited.insert(node); | ||
|
||
// Find and append next nodes | ||
const std::vector<std::vector<Edge>>& edges = node->GetEdges(); | ||
for (const auto& edge_list : edges) { | ||
for (const Edge& edge : edge_list) { | ||
GradNodeBase* next_node = edge.GetMutableGradNode().get(); | ||
// Update in_degree | ||
if (!node_in_degree_map.count(next_node)) | ||
node_in_degree_map[next_node] = 0; | ||
node_in_degree_map[next_node]++; | ||
queue.push(next_node); | ||
} | ||
} | ||
} | ||
|
||
return node_in_degree_map; | ||
} | ||
|
||
void RunBackward(const std::vector<egr::EagerTensor>& tensors, | ||
const std::vector<egr::EagerTensor>& grad_tensors, | ||
bool retain_graph) { | ||
VLOG(6) << "Start Backward"; | ||
// *Gradient Hook should happen at node-level | ||
// *Inplace version check should perform at node-level | ||
// *Cross-batch accumulation happens at forward pass | ||
|
||
/* --- Initialization --- */ | ||
// 1. Init queue with starting nodes | ||
// 2. Prepare initial input buffers | ||
std::queue<GradNodeBase*> queue; | ||
std::unordered_map<GradNodeBase*, std::unique_ptr<GradTensorHolder>> | ||
node_input_buffers_dict; | ||
for (size_t i = 0; i < tensors.size(); i++) { | ||
const egr::EagerTensor& tensor = tensors[i]; | ||
|
||
AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(tensor); | ||
// Get grad input info from target tensors | ||
auto input_info = auto_grad_meta->OutRankInfo(); | ||
|
||
VLOG(2) << "Out Rank of Tensor is slot: " << input_info.first | ||
<< ", rank: " << input_info.second; | ||
// Get target GradNodeBase from target tensors | ||
GradNodeBase* grad_node = auto_grad_meta->GetMutableGradNode().get(); | ||
|
||
PADDLE_ENFORCE(grad_node, | ||
paddle::platform::errors::Fatal( | ||
"Detected null grad_node." | ||
"Grad Node is nullptr for grad input tensor %d", | ||
i)); | ||
// Prepare GradTensorHolder | ||
if (!node_input_buffers_dict.count(grad_node)) { | ||
VLOG(6) << "Create Value for grad input tensor " << i; | ||
node_input_buffers_dict[grad_node] = | ||
std::make_unique<GradTensorHolder>(grad_node->InputMeta()); | ||
} | ||
|
||
if (grad_tensors.size() > 0) { | ||
PADDLE_ENFORCE( | ||
grad_tensors.size() == tensors.size(), | ||
paddle::platform::errors::Fatal( | ||
"Detected size mismatch between tensors and grad_tensors" | ||
"grad_tensors should either have " | ||
"size = 0 or same size as tensors")); | ||
// Feed given tensor if it's provided | ||
VLOG(6) << "Fill grad input tensor " << i << "with give grad tensor"; | ||
node_input_buffers_dict[grad_node]->add( | ||
input_info.first, input_info.second, grad_tensors[i]); | ||
|
||
} else { | ||
VLOG(6) << "Fill grad input tensor " << i << " with 1.0"; | ||
// Initialize tensor with 1.0 | ||
// Forward Tensor "tensor" is passed to indicate tensortype, datatype and | ||
// dims | ||
// GradTensorHolder will initialize another tensor with same tensortype, | ||
// datatype and dims but filled with 1.0 | ||
node_input_buffers_dict[grad_node]->add( | ||
input_info.first, input_info.second, tensor, true /*fill_one=true*/); | ||
} | ||
|
||
// Prepare queue | ||
queue.push(grad_node); | ||
} | ||
|
||
VLOG(6) << "Update In degree Map for backward"; | ||
// 3. Compute in_degree for each node | ||
std::unordered_map<GradNodeBase*, int> node_in_degree_map = | ||
getInDegreeMap(queue); | ||
|
||
/* --- Topological Visit --- */ | ||
// 1. Pop queue | ||
// 2. Run node | ||
// |- node(grads) | ||
// |- Prepare for next node | ||
// 3. Update queue | ||
VLOG(6) << "Run Backward"; | ||
while (!queue.empty()) { | ||
GradNodeBase* node = queue.front(); | ||
queue.pop(); | ||
|
||
// Run node: This is where Hook happens | ||
PADDLE_ENFORCE( | ||
node_input_buffers_dict.count(node), | ||
paddle::platform::errors::Fatal( | ||
"Unable to find next node in the InputBuufer" | ||
"Trying to run Node without configuring its GradTensorHolder")); | ||
|
||
std::unique_ptr<GradTensorHolder> node_input_buffer = | ||
std::move(node_input_buffers_dict[node]); | ||
VLOG(6) << "Run Backward Kernel with input_buffer"; | ||
// Run Backward Node and get outputs | ||
std::vector<std::vector<egr::EagerTensor>> grad_output_tensors = | ||
(*node)(node_input_buffer->Buffers()); | ||
// TODO(jiabin): Should we erase it or find a more efficient way. | ||
node_input_buffers_dict.erase(node); | ||
|
||
// Prepare GradTensorHolder for next node | ||
const std::vector<std::vector<Edge>>& edges = node->GetEdges(); | ||
|
||
PADDLE_ENFORCE(edges.size() == grad_output_tensors.size() || edges.empty(), | ||
paddle::platform::errors::Fatal( | ||
"Number of edges should be either empty ( for leaf node " | ||
") or the same as number of output grad tensors")); | ||
|
||
for (size_t i = 0; i < edges.size(); i++) { | ||
for (size_t j = 0; j < edges[i].size(); j++) { | ||
const Edge& edge = edges[i][j]; | ||
auto edge_rank = edge.GetEdgeRankInfo(); | ||
// Since we make edge has as same rank as bwd outputs, we indexing them | ||
// with | ||
// the same rank(i, j) | ||
VLOG(6) << "Get Edge with slot: " << i << ", rank: " << j; | ||
egr::EagerTensor& grad_output_tensor = grad_output_tensors[i][j]; | ||
if (!grad_output_tensor.defined() || | ||
!grad_output_tensor.initialized()) { | ||
VLOG(6) << "We get grad_output_tensor with slot: " << i | ||
<< ", rank: " << j << " as uninitialized or undefined tensor"; | ||
} | ||
GradNodeBase* next_node = edge.GetMutableGradNode().get(); | ||
|
||
if (!node_input_buffers_dict.count(next_node)) { | ||
node_input_buffers_dict[next_node] = | ||
std::make_unique<GradTensorHolder>(next_node->InputMeta()); | ||
} | ||
VLOG(6) << "Sum grad inputs for edge slot: " << edge_rank.first | ||
<< ", rank: " << edge_rank.second; | ||
node_input_buffers_dict[next_node]->add( | ||
edge_rank.first, edge_rank.second, grad_output_tensor); | ||
|
||
// Update queue | ||
node_in_degree_map[next_node]--; | ||
PADDLE_ENFORCE(node_in_degree_map[next_node] >= 0, | ||
paddle::platform::errors::Fatal( | ||
"Detected in-degree value smaller than zero." | ||
"Node's in-degree cannot be negative")); | ||
if (node_in_degree_map[next_node] == 0) { | ||
queue.emplace(std::move(next_node)); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
} // namespace egr |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#pragma once | ||
|
||
#include "paddle/fluid/eager/eager_tensor.h" | ||
#include "paddle/pten/api/all.h" | ||
|
||
namespace egr { | ||
|
||
// run_backward(): | ||
// tensors corresponds to those lived in the backward graph | ||
// each grad_tensors[i] keeps the value for its corresponding tensors[i] | ||
void RunBackward(const std::vector<egr::EagerTensor> &tensors, | ||
const std::vector<egr::EagerTensor> &grad_tensors, | ||
bool retain_graph = false); | ||
|
||
// Reserved for gradient() | ||
|
||
} // namespace egr |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.