Skip to content

Commit

Permalink
[OpTestPy] add greater/grid_sampler utest (PaddlePaddle#7994)
Browse files Browse the repository at this point in the history
  • Loading branch information
daming5432 authored and WeiLi233 committed Mar 29, 2022
1 parent a67633d commit 2310afa
Show file tree
Hide file tree
Showing 2 changed files with 243 additions and 0 deletions.
120 changes: 120 additions & 0 deletions lite/tests/unittest_py/op/test_greater_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys

from numpy.lib.function_base import place
sys.path.append('../')

from auto_scan_test import AutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place
import unittest

import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
import argparse
import numpy as np
from functools import partial


class TestAssignOp(AutoScanTest):
def __init__(self, *args, **kwargs):
AutoScanTest.__init__(self, *args, **kwargs)
host_op_config = [
Place(TargetType.Host, PrecisionType.Any, DataLayoutType.NCHW),
Place(TargetType.Host, PrecisionType.FP32, DataLayoutType.Any)
]
self.enable_testing_on_place(places=host_op_config)

def is_program_valid(self,
program_config: ProgramConfig,
predictor_config: CxxConfig) -> bool:
in_dtype = program_config.inputs["data_x"].dtype

if "int32" == in_dtype:
return False
return True

def sample_program_configs(self, draw):
in_shape_x = draw(
st.lists(
st.integers(
min_value=3, max_value=10), min_size=3, max_size=4))
axis = draw(st.sampled_from([-1, 0, 1, 2]))
op_type_str = draw(st.sampled_from(["greater_equal", "greater_than"]))
process_type = draw(
st.sampled_from(["type_int64", "type_float", "type_int32"]))

if axis == -1:
in_shape_y = in_shape_x
else:
in_shape_y = in_shape_x[axis:]

def generate_data(type, size_list):
if type == "type_int32":
return np.random.randint(
low=0, high=100, size=size_list).astype(np.int32)
elif type == "type_int64":
return np.random.randint(
low=0, high=100, size=size_list).astype(np.int64)
elif type == "type_float":
return np.random.random(size=size_list).astype(np.float32)

def generate_input_x():
return generate_data(process_type, in_shape_x)

def generate_input_y():
return generate_data(process_type, in_shape_y)

build_ops = OpConfig(
type=op_type_str,
inputs={"X": ["data_x"],
"Y": ["data_y"]},
outputs={"Out": ["output_data"], },
attrs={"axis": axis,
"force_cpu": True},
outputs_dtype={"output_data": np.bool_})

cast_out = OpConfig(
type="cast",
inputs={"X": ["output_data"], },
outputs={"Out": ["cast_data_out"], },
attrs={"in_dtype": int(0),
"out_dtype": int(2)},
outputs_dtype={"cast_data_out": np.int32})

program_config = ProgramConfig(
ops=[build_ops, cast_out],
weights={},
inputs={
"data_x": TensorConfig(data_gen=partial(generate_input_x)),
"data_y": TensorConfig(data_gen=partial(generate_input_y)),
},
outputs=["cast_data_out"])
return program_config

def sample_predictor_configs(self):
return self.get_predictor_configs(), ["greater_equal_and_than"], (1e-5,
1e-5)

def add_ignore_pass_case(self):
pass

def test(self, *args, **kwargs):
self.run_and_statis(quant=False, max_examples=300)


if __name__ == "__main__":
unittest.main(argv=[''])
123 changes: 123 additions & 0 deletions lite/tests/unittest_py/op/test_grid_sampler_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
sys.path.append('../')

from auto_scan_test import AutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place
import unittest

import hypothesis
from hypothesis import given, settings, seed, example, assume

import numpy as np
from functools import partial
import hypothesis.strategies as st


class TestGridSamplerOp(AutoScanTest):
def __init__(self, *args, **kwargs):
AutoScanTest.__init__(self, *args, **kwargs)
self.enable_testing_on_place(
TargetType.X86,
PrecisionType.FP32,
DataLayoutType.NCHW,
thread=[1, 4])
self.enable_testing_on_place(
TargetType.ARM,
PrecisionType.FP32,
DataLayoutType.NCHW,
thread=[1, 4])
opencl_places = [
Place(TargetType.OpenCL, PrecisionType.FP16,
DataLayoutType.ImageDefault), Place(
TargetType.OpenCL, PrecisionType.FP16,
DataLayoutType.ImageFolder),
Place(TargetType.OpenCL, PrecisionType.FP32, DataLayoutType.NCHW),
Place(TargetType.OpenCL, PrecisionType.Any,
DataLayoutType.ImageDefault), Place(
TargetType.OpenCL, PrecisionType.Any,
DataLayoutType.ImageFolder),
Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.NCHW),
Place(TargetType.Host, PrecisionType.FP32)
]
self.enable_testing_on_place(places=opencl_places)

def is_program_valid(self,
program_config: ProgramConfig,
predictor_config: CxxConfig) -> bool:
if predictor_config.target() == TargetType.OpenCL:
if program_config.ops[0].attrs[
"align_corners"] != True or program_config.ops[0].attrs[
"padding_mode"] != "zeros" or program_config.ops[
0].attrs["mode"] != "bilinear":
return False
return True

def sample_program_configs(self, draw):
in_shape1 = draw(
st.lists(
st.integers(
min_value=3, max_value=10), min_size=4, max_size=4))

in_shape2 = []
in_shape2.append(in_shape1[0])
in_shape2.append(in_shape1[2])
in_shape2.append(in_shape1[3])
in_shape2.append(2)

align_corners = draw(st.booleans())
mode = draw(st.sampled_from(["bilinear", "nearest"]))
padding_mode = draw(st.sampled_from(["zeros", "reflection", "border"]))
grid_sampler_op = OpConfig(
type="grid_sampler",
inputs={"X": ["input_data"],
"Grid": ["grid_data"]},
outputs={"Output": ["output_data"]},
attrs={
"align_corners": align_corners,
"mode": mode,
"padding_mode": padding_mode
})

program_config = ProgramConfig(
ops=[grid_sampler_op],
weights={"grid_data": TensorConfig(shape=in_shape2)},
inputs={"input_data": TensorConfig(shape=in_shape1)},
outputs=["output_data"])

return program_config

def sample_predictor_configs(self):
return self.get_predictor_configs(), ["grid_sampler"], (1e-5, 1e-5)

def add_ignore_pass_case(self):
def teller1(program_config, predictor_config):
return True

self.add_ignore_check_case(
# IgnoreReasonsBase.PADDLE_NOT_IMPLEMENTED
# IgnoreReasonsBase.PADDLELITE_NOT_SUPPORT
# IgnoreReasonsBase.ACCURACY_ERROR
teller1,
IgnoreReasons.ACCURACY_ERROR,
"The op output has diff. We need to fix it as soon as possible.")

def test(self, *args, **kwargs):
self.run_and_statis(quant=False, max_examples=300)


if __name__ == "__main__":
unittest.main(argv=[''])

0 comments on commit 2310afa

Please sign in to comment.