forked from PaddlePaddle/Paddle-Lite
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[OpTestPy] add greater/grid_sampler utest (PaddlePaddle#7994)
- Loading branch information
1 parent
a67633d
commit 2310afa
Showing
2 changed files
with
243 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import sys | ||
|
||
from numpy.lib.function_base import place | ||
sys.path.append('../') | ||
|
||
from auto_scan_test import AutoScanTest, IgnoreReasons | ||
from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place | ||
import unittest | ||
|
||
import hypothesis | ||
from hypothesis import given, settings, seed, example, assume | ||
import hypothesis.strategies as st | ||
import argparse | ||
import numpy as np | ||
from functools import partial | ||
|
||
|
||
class TestAssignOp(AutoScanTest): | ||
def __init__(self, *args, **kwargs): | ||
AutoScanTest.__init__(self, *args, **kwargs) | ||
host_op_config = [ | ||
Place(TargetType.Host, PrecisionType.Any, DataLayoutType.NCHW), | ||
Place(TargetType.Host, PrecisionType.FP32, DataLayoutType.Any) | ||
] | ||
self.enable_testing_on_place(places=host_op_config) | ||
|
||
def is_program_valid(self, | ||
program_config: ProgramConfig, | ||
predictor_config: CxxConfig) -> bool: | ||
in_dtype = program_config.inputs["data_x"].dtype | ||
|
||
if "int32" == in_dtype: | ||
return False | ||
return True | ||
|
||
def sample_program_configs(self, draw): | ||
in_shape_x = draw( | ||
st.lists( | ||
st.integers( | ||
min_value=3, max_value=10), min_size=3, max_size=4)) | ||
axis = draw(st.sampled_from([-1, 0, 1, 2])) | ||
op_type_str = draw(st.sampled_from(["greater_equal", "greater_than"])) | ||
process_type = draw( | ||
st.sampled_from(["type_int64", "type_float", "type_int32"])) | ||
|
||
if axis == -1: | ||
in_shape_y = in_shape_x | ||
else: | ||
in_shape_y = in_shape_x[axis:] | ||
|
||
def generate_data(type, size_list): | ||
if type == "type_int32": | ||
return np.random.randint( | ||
low=0, high=100, size=size_list).astype(np.int32) | ||
elif type == "type_int64": | ||
return np.random.randint( | ||
low=0, high=100, size=size_list).astype(np.int64) | ||
elif type == "type_float": | ||
return np.random.random(size=size_list).astype(np.float32) | ||
|
||
def generate_input_x(): | ||
return generate_data(process_type, in_shape_x) | ||
|
||
def generate_input_y(): | ||
return generate_data(process_type, in_shape_y) | ||
|
||
build_ops = OpConfig( | ||
type=op_type_str, | ||
inputs={"X": ["data_x"], | ||
"Y": ["data_y"]}, | ||
outputs={"Out": ["output_data"], }, | ||
attrs={"axis": axis, | ||
"force_cpu": True}, | ||
outputs_dtype={"output_data": np.bool_}) | ||
|
||
cast_out = OpConfig( | ||
type="cast", | ||
inputs={"X": ["output_data"], }, | ||
outputs={"Out": ["cast_data_out"], }, | ||
attrs={"in_dtype": int(0), | ||
"out_dtype": int(2)}, | ||
outputs_dtype={"cast_data_out": np.int32}) | ||
|
||
program_config = ProgramConfig( | ||
ops=[build_ops, cast_out], | ||
weights={}, | ||
inputs={ | ||
"data_x": TensorConfig(data_gen=partial(generate_input_x)), | ||
"data_y": TensorConfig(data_gen=partial(generate_input_y)), | ||
}, | ||
outputs=["cast_data_out"]) | ||
return program_config | ||
|
||
def sample_predictor_configs(self): | ||
return self.get_predictor_configs(), ["greater_equal_and_than"], (1e-5, | ||
1e-5) | ||
|
||
def add_ignore_pass_case(self): | ||
pass | ||
|
||
def test(self, *args, **kwargs): | ||
self.run_and_statis(quant=False, max_examples=300) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main(argv=['']) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import sys | ||
sys.path.append('../') | ||
|
||
from auto_scan_test import AutoScanTest, IgnoreReasons | ||
from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place | ||
import unittest | ||
|
||
import hypothesis | ||
from hypothesis import given, settings, seed, example, assume | ||
|
||
import numpy as np | ||
from functools import partial | ||
import hypothesis.strategies as st | ||
|
||
|
||
class TestGridSamplerOp(AutoScanTest): | ||
def __init__(self, *args, **kwargs): | ||
AutoScanTest.__init__(self, *args, **kwargs) | ||
self.enable_testing_on_place( | ||
TargetType.X86, | ||
PrecisionType.FP32, | ||
DataLayoutType.NCHW, | ||
thread=[1, 4]) | ||
self.enable_testing_on_place( | ||
TargetType.ARM, | ||
PrecisionType.FP32, | ||
DataLayoutType.NCHW, | ||
thread=[1, 4]) | ||
opencl_places = [ | ||
Place(TargetType.OpenCL, PrecisionType.FP16, | ||
DataLayoutType.ImageDefault), Place( | ||
TargetType.OpenCL, PrecisionType.FP16, | ||
DataLayoutType.ImageFolder), | ||
Place(TargetType.OpenCL, PrecisionType.FP32, DataLayoutType.NCHW), | ||
Place(TargetType.OpenCL, PrecisionType.Any, | ||
DataLayoutType.ImageDefault), Place( | ||
TargetType.OpenCL, PrecisionType.Any, | ||
DataLayoutType.ImageFolder), | ||
Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.NCHW), | ||
Place(TargetType.Host, PrecisionType.FP32) | ||
] | ||
self.enable_testing_on_place(places=opencl_places) | ||
|
||
def is_program_valid(self, | ||
program_config: ProgramConfig, | ||
predictor_config: CxxConfig) -> bool: | ||
if predictor_config.target() == TargetType.OpenCL: | ||
if program_config.ops[0].attrs[ | ||
"align_corners"] != True or program_config.ops[0].attrs[ | ||
"padding_mode"] != "zeros" or program_config.ops[ | ||
0].attrs["mode"] != "bilinear": | ||
return False | ||
return True | ||
|
||
def sample_program_configs(self, draw): | ||
in_shape1 = draw( | ||
st.lists( | ||
st.integers( | ||
min_value=3, max_value=10), min_size=4, max_size=4)) | ||
|
||
in_shape2 = [] | ||
in_shape2.append(in_shape1[0]) | ||
in_shape2.append(in_shape1[2]) | ||
in_shape2.append(in_shape1[3]) | ||
in_shape2.append(2) | ||
|
||
align_corners = draw(st.booleans()) | ||
mode = draw(st.sampled_from(["bilinear", "nearest"])) | ||
padding_mode = draw(st.sampled_from(["zeros", "reflection", "border"])) | ||
grid_sampler_op = OpConfig( | ||
type="grid_sampler", | ||
inputs={"X": ["input_data"], | ||
"Grid": ["grid_data"]}, | ||
outputs={"Output": ["output_data"]}, | ||
attrs={ | ||
"align_corners": align_corners, | ||
"mode": mode, | ||
"padding_mode": padding_mode | ||
}) | ||
|
||
program_config = ProgramConfig( | ||
ops=[grid_sampler_op], | ||
weights={"grid_data": TensorConfig(shape=in_shape2)}, | ||
inputs={"input_data": TensorConfig(shape=in_shape1)}, | ||
outputs=["output_data"]) | ||
|
||
return program_config | ||
|
||
def sample_predictor_configs(self): | ||
return self.get_predictor_configs(), ["grid_sampler"], (1e-5, 1e-5) | ||
|
||
def add_ignore_pass_case(self): | ||
def teller1(program_config, predictor_config): | ||
return True | ||
|
||
self.add_ignore_check_case( | ||
# IgnoreReasonsBase.PADDLE_NOT_IMPLEMENTED | ||
# IgnoreReasonsBase.PADDLELITE_NOT_SUPPORT | ||
# IgnoreReasonsBase.ACCURACY_ERROR | ||
teller1, | ||
IgnoreReasons.ACCURACY_ERROR, | ||
"The op output has diff. We need to fix it as soon as possible.") | ||
|
||
def test(self, *args, **kwargs): | ||
self.run_and_statis(quant=False, max_examples=300) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main(argv=['']) |