Skip to content

Commit

Permalink
Port sort-research-rs test suite Rust stdlib tests
Browse files Browse the repository at this point in the history
This commit is a followup to rust-lang#124032. It
replaces the tests that test the various sort functions in the standard library
with a test-suite developed as part of
/~https://github.com/Voultapher/sort-research-rs. The current tests suffer a
couple of problems:

- They don't cover important real world patterns that the implementations take
  advantage of and execute special code for.
- The input lengths tested miss out on code paths. For example, important safety
  property tests never reach the quicksort part of the implementation.
- The miri side is often limited to `len <= 20` which means it very thoroughly
  tests the insertion sort, which accounts for 19 out of 1.5k LoC.
- They are split into to core and alloc, causing code duplication and uneven
  coverage.
- The randomness is not repeatable, as it
  relies on `std::hash::RandomState::new().build_hasher()`.

Most of these issues existed before
rust-lang#124032, but they are intensified by it.
One thing that is new and requires additional testing, is that the new sort
implementations specialize based on type properties. For example `Freeze` and
non `Freeze` execute different code paths.

Effectively there are three dimensions that matter:

- Input type
- Input length
- Input pattern

The ported test-suite tests various properties along all three dimensions,
greatly improving test coverage. It side-steps the miri issue by preferring
sampled approaches. For example the test that checks if after a panic the set of
elements is still the original one, doesn't do so for every single possible
panic opportunity but rather it picks one at random, and performs this test
across a range of input length, which varies the panic point across them. This
allows regular execution to easily test inputs of length 10k, and miri execution
up to 100 which covers significantly more code. The randomness used is tied to a
fixed - but random per process execution - seed. This allows for fully
repeatable tests and fuzzer like exploration across multiple runs.

Structure wise, the tests are previously found in the core integration tests for
`sort_unstable` and alloc unit tests for `sort`. The new test-suite was
developed to be a purely black-box approach, which makes integration testing the
better place, because it can't accidentally rely on internal access. Because
unwinding support is required the tests can't be in core, even if the
implementation is, so they are now part of the alloc integration tests. Are
there architectures that can only build and test core and not alloc? If so, do
such platforms require sort testing? For what it's worth the current
implementation state passes miri `--target mips64-unknown-linux-gnuabi64` which
is big endian.

The test-suite also contains tests for properties that were and are given by the
current and previous implementations, and likely relied upon by users but
weren't tested. For example `self_cmp` tests that the two parameters `a` and `b`
passed into the comparison function are never references to the same object,
which if the user is sorting for example a `&mut [Mutex<i32>]` could lead to a
deadlock.

Instead of using the hashed caller location as rand seed, it uses seconds since
unix epoch / 10, which given timestamps in the CI should be reasonably easy to
reproduce, but also allows fuzzer like space exploration.
  • Loading branch information
Voultapher committed Sep 30, 2024
1 parent e9df22f commit 71bb0e7
Show file tree
Hide file tree
Showing 10 changed files with 1,955 additions and 434 deletions.
24 changes: 10 additions & 14 deletions library/alloc/src/slice.rs
Original file line number Diff line number Diff line change
Expand Up @@ -19,20 +19,6 @@ use core::cmp::Ordering::{self, Less};
use core::mem::{self, MaybeUninit};
#[cfg(not(no_global_oom_handling))]
use core::ptr;
#[cfg(not(no_global_oom_handling))]
use core::slice::sort;

use crate::alloc::Allocator;
#[cfg(not(no_global_oom_handling))]
use crate::alloc::Global;
#[cfg(not(no_global_oom_handling))]
use crate::borrow::ToOwned;
use crate::boxed::Box;
use crate::vec::Vec;

#[cfg(test)]
mod tests;

#[unstable(feature = "array_chunks", issue = "74985")]
pub use core::slice::ArrayChunks;
#[unstable(feature = "array_chunks", issue = "74985")]
Expand All @@ -43,6 +29,8 @@ pub use core::slice::ArrayWindows;
pub use core::slice::EscapeAscii;
#[stable(feature = "slice_get_slice", since = "1.28.0")]
pub use core::slice::SliceIndex;
#[cfg(not(no_global_oom_handling))]
use core::slice::sort;
#[stable(feature = "slice_group_by", since = "1.77.0")]
pub use core::slice::{ChunkBy, ChunkByMut};
#[stable(feature = "rust1", since = "1.0.0")]
Expand Down Expand Up @@ -83,6 +71,14 @@ pub use hack::into_vec;
#[cfg(test)]
pub use hack::to_vec;

use crate::alloc::Allocator;
#[cfg(not(no_global_oom_handling))]
use crate::alloc::Global;
#[cfg(not(no_global_oom_handling))]
use crate::borrow::ToOwned;
use crate::boxed::Box;
use crate::vec::Vec;

// HACK(japaric): With cfg(test) `impl [T]` is not available, these three
// functions are actually methods that are in `impl [T]` but not in
// `core::slice::SliceExt` - we need to supply these functions for the
Expand Down
Loading

0 comments on commit 71bb0e7

Please sign in to comment.