-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7b82b95
commit 0fe5c07
Showing
1 changed file
with
132 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
import streamlit as st | ||
from langchain.document_loaders import PyPDFLoader, DirectoryLoader | ||
from langchain import PromptTemplate | ||
from langchain.embeddings import HuggingFaceEmbeddings | ||
from langchain.vectorstores import FAISS | ||
from langchain.llms import CTransformers | ||
from langchain.chains import RetrievalQA | ||
|
||
DB_FAISS_PATH = 'vectorstores/db_faiss' | ||
|
||
custom_prompt_template = """Use the following pieces of information to answer the user's question. | ||
If you don't know the answer, just say that you don't know, don't try to make up an answer. | ||
Context: {context} | ||
Question: {question} | ||
Only return the helpful answer below and nothing else. | ||
Helpful answer: | ||
""" | ||
|
||
def set_custom_prompt(): | ||
prompt = PromptTemplate(template=custom_prompt_template, | ||
input_variables=['context', 'question']) | ||
return prompt | ||
|
||
def retrieval_qa_chain(llm, prompt, db): | ||
qa_chain = RetrievalQA.from_chain_type(llm=llm, | ||
chain_type='stuff', | ||
retriever=db.as_retriever(search_kwargs={'k': 2}), | ||
return_source_documents=True, | ||
chain_type_kwargs={'prompt': prompt} | ||
) | ||
return qa_chain | ||
|
||
def load_llm(): | ||
llm = CTransformers( | ||
model="TheBloke/Llama-2-7B-Chat-GGML", | ||
model_type="llama", | ||
max_new_tokens=512, | ||
temperature=0.5 | ||
) | ||
return llm | ||
|
||
def qa_bot(query): | ||
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", | ||
model_kwargs={'device': 'cpu'}) | ||
db = FAISS.load_local(DB_FAISS_PATH, embeddings) | ||
llm = load_llm() | ||
qa_prompt = set_custom_prompt() | ||
qa = retrieval_qa_chain(llm, qa_prompt, db) | ||
|
||
# Implement the question-answering logic here | ||
response = qa({'query': query}) | ||
return response['result'] | ||
|
||
def add_vertical_space(spaces=1): | ||
for _ in range(spaces): | ||
st.markdown("---") | ||
|
||
def main(): | ||
st.set_page_config(page_title="Llama-2-GGML Medical Chatbot") | ||
|
||
with st.sidebar: | ||
st.title('Llama-2-GGML Medical Chatbot! 🚀🤖') | ||
st.markdown(''' | ||
## About | ||
The Llama-2-GGML Medical Chatbot uses the **Llama-2-7B-Chat-GGML** model and was trained on medical data from **"The GALE ENCYCLOPEDIA of MEDICINE"**. | ||
### 🔄Bot evolving, stay tuned! | ||
## Useful Links 🔗 | ||
- **Model:** [Llama-2-7B-Chat-GGML](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML) 📚 | ||
- **GitHub:** [ThisIs-Developer/Llama-2-GGML-Medical-Chatbot](/~https://github.com/ThisIs-Developer/Llama-2-GGML-Medical-Chatbot) 💬 | ||
''') | ||
add_vertical_space(1) # Adjust the number of spaces as needed | ||
st.write('Made by [@ThisIs-Developer](https://huggingface.co/ThisIs-Developer)') | ||
|
||
st.title("Llama-2-GGML Medical Chatbot") | ||
st.markdown( | ||
""" | ||
<style> | ||
.chat-container { | ||
display: flex; | ||
flex-direction: column; | ||
height: 400px; | ||
overflow-y: auto; | ||
padding: 10px; | ||
color: white; /* Font color */ | ||
} | ||
.user-bubble { | ||
background-color: #007bff; /* Blue color for user */ | ||
align-self: flex-end; | ||
border-radius: 10px; | ||
padding: 8px; | ||
margin: 5px; | ||
max-width: 70%; | ||
word-wrap: break-word; | ||
} | ||
.bot-bubble { | ||
background-color: #363636; /* Slightly lighter background color */ | ||
align-self: flex-start; | ||
border-radius: 10px; | ||
padding: 8px; | ||
margin: 5px; | ||
max-width: 70%; | ||
word-wrap: break-word; | ||
} | ||
</style> | ||
""" | ||
, unsafe_allow_html=True) | ||
|
||
conversation = st.session_state.get("conversation", []) | ||
|
||
query = st.text_input("Ask your question here:", key="user_input") | ||
if st.button("Get Answer"): | ||
if query: | ||
with st.spinner("Processing your question..."): # Display the processing message | ||
conversation.append({"role": "user", "message": query}) | ||
# Call your QA function | ||
answer = qa_bot(query) | ||
conversation.append({"role": "bot", "message": answer}) | ||
st.session_state.conversation = conversation | ||
else: | ||
st.warning("Please input a question.") | ||
|
||
chat_container = st.empty() | ||
chat_bubbles = ''.join([f'<div class="{c["role"]}-bubble">{c["message"]}</div>' for c in conversation]) | ||
chat_container.markdown(f'<div class="chat-container">{chat_bubbles}</div>', unsafe_allow_html=True) | ||
|
||
if __name__ == "__main__": | ||
main() |