-
Notifications
You must be signed in to change notification settings - Fork 2.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add ICNet for image segmentation. #975
Merged
+1,127
−0
Merged
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
运行本目录下的程序示例需要使用PaddlePaddle develop最新版本。如果您的PaddlePaddle安装版本低于此要求,请按照[安装文档](http://www.paddlepaddle.org/docs/develop/documentation/zh/build_and_install/pip_install_cn.html)中的说明更新PaddlePaddle安装版本。 | ||
|
||
|
||
## 代码结构 | ||
``` | ||
├── network.py # 网络结构定义脚本 | ||
├── train.py # 训练任务脚本 | ||
├── eval.py # 评估脚本 | ||
├── infer.py # 预测脚本 | ||
├── cityscape.py # 数据预处理脚本 | ||
└── utils.py # 定义通用的函数 | ||
``` | ||
|
||
## 简介 | ||
|
||
Image Cascade Network(ICNet)主要用于图像实时语义分割。相较于其它压缩计算的方法,ICNet即考虑了速度,也考虑了准确性。 | ||
ICNet的主要思想是将输入图像变换为不同的分辨率,然后用不同计算复杂度的子网络计算不同分辨率的输入,然后将结果合并。ICNet由三个子网络组成,计算复杂度高的网络处理低分辨率输入,计算复杂度低的网络处理分辨率高的网络,通过这种方式在高分辨率图像的准确性和低复杂度网络的效率之间获得平衡。 | ||
|
||
整个网络结构如下: | ||
|
||
<p align="center"> | ||
<img src="images/icnet.png" width="620" hspace='10'/> <br/> | ||
<strong>图 1</strong> | ||
</p> | ||
|
||
|
||
## 数据准备 | ||
|
||
|
||
|
||
本文采用Cityscape数据集,请前往[Cityscape官网](https://www.cityscapes-dataset.com)注册下载。下载数据之后,按照[这里](/~https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/createTrainIdLabelImgs.py#L3)的说明和工具处理数据。 | ||
处理之后的数据 | ||
``` | ||
data/cityscape/ | ||
|-- gtFine | ||
| |-- test | ||
| |-- train | ||
| `-- val | ||
|-- leftImg8bit | ||
| |-- test | ||
| |-- train | ||
| `-- val | ||
|-- train.list | ||
`-- val.list | ||
``` | ||
其中,train.list和val.list分别是用于训练和测试的列表文件,第一列为输入图像数据,第二列为标注数据,两列用空格分开。示例如下: | ||
``` | ||
leftImg8bit/train/stuttgart/stuttgart_000021_000019_leftImg8bit.png gtFine/train/stuttgart/stuttgart_000021_000019_gtFine_labelTrainIds.png | ||
leftImg8bit/train/stuttgart/stuttgart_000072_000019_leftImg8bit.png gtFine/train/stuttgart/stuttgart_000072_000019_gtFine_labelTrainIds.png | ||
``` | ||
完成数据下载和准备后,需要修改`cityscape.py`脚本中对应的数据地址。 | ||
|
||
## 模型训练与预测 | ||
|
||
### 训练 | ||
执行以下命令进行训练: | ||
``` | ||
python train.py --batch_size=16 --use_gpu=True | ||
``` | ||
使用以下命令获得更多使用说明: | ||
``` | ||
python train.py --help | ||
``` | ||
训练过程中会根据用户的设置,输出训练集上每个网络分支的`loss`, 示例如下: | ||
``` | ||
Iter[0]; train loss: 2.338; sub4_loss: 3.367; sub24_loss: 4.120; sub124_loss: 0.151 | ||
``` | ||
### 测试 | ||
执行以下命令在`Cityscape`测试数据集上进行测试: | ||
``` | ||
python eval.py --model_path="./model/" --use_gpu=True | ||
``` | ||
需要通过选项`--model_path`指定模型文件。 | ||
测试脚本的输出的评估指标为[mean IoU]()。 | ||
|
||
### 预测 | ||
执行以下命令对指定的数据进行预测: | ||
``` | ||
python infer.py \ | ||
--model_path="./model" \ | ||
--images_path="./data/cityscape/" \ | ||
--images_list="./data/cityscape/infer.list" | ||
``` | ||
通过选项`--images_list`指定列表文件,列表文件中每一行为一个要预测的图片的路径。 | ||
预测结果默认保存到当前路径下的`output`文件夹下。 | ||
|
||
## 实验结果 | ||
图2为在`CityScape`训练集上的训练的Loss曲线: | ||
|
||
<p align="center"> | ||
<img src="images/train_loss.png" width="620" hspace='10'/> <br/> | ||
<strong>图 2</strong> | ||
</p> | ||
|
||
在训练集上训练,在validation数据集上验证的结果为:mean_IoU=67.0%(论文67.7%) | ||
|
||
图3是使用`infer.py`脚本预测产生的结果示例,其中,第一行为输入的原始图片,第二行为人工的标注,第三行为我们模型计算的结果。 | ||
<p align="center"> | ||
<img src="images/result.png" width="620" hspace='10'/> <br/> | ||
<strong>图 3</strong> | ||
</p> | ||
|
||
## 其他信息 | ||
|数据集 | pretrained model | | ||
|---|---| | ||
|CityScape | [Model]()[md: ] | | ||
|
||
## 参考 | ||
|
||
- [ICNet for Real-Time Semantic Segmentation on High-Resolution Images](https://arxiv.org/abs/1704.08545) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
"""Reader for Cityscape dataset. | ||
""" | ||
import os | ||
import cv2 | ||
import numpy as np | ||
import paddle.v2 as paddle | ||
|
||
DATA_PATH = "./data/cityscape" | ||
TRAIN_LIST = DATA_PATH + "/train.list" | ||
TEST_LIST = DATA_PATH + "/val.list" | ||
IGNORE_LABEL = 255 | ||
NUM_CLASSES = 19 | ||
TRAIN_DATA_SHAPE = (3, 720, 720) | ||
TEST_DATA_SHAPE = (3, 1024, 2048) | ||
IMG_MEAN = np.array((103.939, 116.779, 123.68), dtype=np.float32) | ||
|
||
|
||
def train_data_shape(): | ||
return TRAIN_DATA_SHAPE | ||
|
||
|
||
def test_data_shape(): | ||
return TEST_DATA_SHAPE | ||
|
||
|
||
def num_classes(): | ||
return NUM_CLASSES | ||
|
||
|
||
class DataGenerater: | ||
def __init__(self, data_list, mode="train", flip=True, scaling=True): | ||
self.flip = flip | ||
self.scaling = scaling | ||
self.image_label = [] | ||
with open(data_list, 'r') as f: | ||
for line in f: | ||
image_file, label_file = line.strip().split(' ') | ||
self.image_label.append((image_file, label_file)) | ||
|
||
def create_train_reader(self, batch_size): | ||
""" | ||
Create a reader for train dataset. | ||
""" | ||
|
||
def reader(): | ||
np.random.shuffle(self.image_label) | ||
images = [] | ||
labels_sub1 = [] | ||
labels_sub2 = [] | ||
labels_sub4 = [] | ||
count = 0 | ||
for image, label in self.image_label: | ||
image, label_sub1, label_sub2, label_sub4 = self.process_train_data( | ||
image, label) | ||
count += 1 | ||
images.append(image) | ||
labels_sub1.append(label_sub1) | ||
labels_sub2.append(label_sub2) | ||
labels_sub4.append(label_sub4) | ||
if count == batch_size: | ||
yield self.mask( | ||
np.array(images), | ||
np.array(labels_sub1), | ||
np.array(labels_sub2), np.array(labels_sub4)) | ||
images = [] | ||
labels_sub1 = [] | ||
labels_sub2 = [] | ||
labels_sub4 = [] | ||
count = 0 | ||
if images: | ||
yield self.mask( | ||
np.array(images), | ||
np.array(labels_sub1), | ||
np.array(labels_sub2), np.array(labels_sub4)) | ||
|
||
return reader | ||
|
||
def create_test_reader(self): | ||
""" | ||
Create a reader for test dataset. | ||
""" | ||
|
||
def reader(): | ||
for image, label in self.image_label: | ||
image, label = self.load(image, label) | ||
image = paddle.image.to_chw(image)[np.newaxis, :] | ||
label = label[np.newaxis, :, :, np.newaxis].astype("float32") | ||
label_mask = np.where((label != IGNORE_LABEL).flatten())[ | ||
0].astype("int32") | ||
yield image, label, label_mask | ||
|
||
return reader | ||
|
||
def process_train_data(self, image, label): | ||
""" | ||
Process training data. | ||
""" | ||
image, label = self.load(image, label) | ||
if self.flip: | ||
image, label = self.random_flip(image, label) | ||
if self.scaling: | ||
image, label = self.random_scaling(image, label) | ||
image, label = self.resize(image, label, out_size=TRAIN_DATA_SHAPE[1:]) | ||
label = label.astype("float32") | ||
label_sub1 = paddle.image.to_chw(self.scale_label(label, factor=4)) | ||
label_sub2 = paddle.image.to_chw(self.scale_label(label, factor=8)) | ||
label_sub4 = paddle.image.to_chw(self.scale_label(label, factor=16)) | ||
image = paddle.image.to_chw(image) | ||
return image, label_sub1, label_sub2, label_sub4 | ||
|
||
def load(self, image, label): | ||
""" | ||
Load image from file. | ||
""" | ||
image = paddle.image.load_image( | ||
DATA_PATH + "/" + image, is_color=True).astype("float32") | ||
image -= IMG_MEAN | ||
label = paddle.image.load_image( | ||
DATA_PATH + "/" + label, is_color=False).astype("float32") | ||
return image, label | ||
|
||
def random_flip(self, image, label): | ||
""" | ||
Flip image and label randomly. | ||
""" | ||
r = np.random.rand(1) | ||
if r > 0.5: | ||
image = paddle.image.left_right_flip(image, is_color=True) | ||
label = paddle.image.left_right_flip(label, is_color=False) | ||
return image, label | ||
|
||
def random_scaling(self, image, label): | ||
""" | ||
Scale image and label randomly. | ||
""" | ||
scale = np.random.uniform(0.5, 2.0, 1)[0] | ||
h_new = int(image.shape[0] * scale) | ||
w_new = int(image.shape[1] * scale) | ||
image = cv2.resize(image, (w_new, h_new)) | ||
label = cv2.resize( | ||
label, (w_new, h_new), interpolation=cv2.INTER_NEAREST) | ||
return image, label | ||
|
||
def padding_as(self, image, h, w, is_color): | ||
""" | ||
Padding image. | ||
""" | ||
pad_h = max(image.shape[0], h) - image.shape[0] | ||
pad_w = max(image.shape[1], w) - image.shape[1] | ||
if is_color: | ||
return np.pad(image, ((0, pad_h), (0, pad_w), (0, 0)), 'constant') | ||
else: | ||
return np.pad(image, ((0, pad_h), (0, pad_w)), 'constant') | ||
|
||
def resize(self, image, label, out_size): | ||
""" | ||
Resize image and label by padding or cropping. | ||
""" | ||
ignore_label = IGNORE_LABEL | ||
label = label - ignore_label | ||
if len(label.shape) == 2: | ||
label = label[:, :, np.newaxis] | ||
combined = np.concatenate((image, label), axis=2) | ||
combined = self.padding_as( | ||
combined, out_size[0], out_size[1], is_color=True) | ||
combined = paddle.image.random_crop( | ||
combined, out_size[0], is_color=True) | ||
image = combined[:, :, 0:3] | ||
label = combined[:, :, 3:4] + ignore_label | ||
return image, label | ||
|
||
def scale_label(self, label, factor): | ||
""" | ||
Scale label according to factor. | ||
""" | ||
h = label.shape[0] / factor | ||
w = label.shape[1] / factor | ||
return cv2.resize( | ||
label, (h, w), interpolation=cv2.INTER_NEAREST)[:, :, np.newaxis] | ||
|
||
def mask(self, image, label0, label1, label2): | ||
""" | ||
Get mask for valid pixels. | ||
""" | ||
mask_sub1 = np.where(((label0 < (NUM_CLASSES + 1)) & ( | ||
label0 != IGNORE_LABEL)).flatten())[0].astype("int32") | ||
mask_sub2 = np.where(((label1 < (NUM_CLASSES + 1)) & ( | ||
label1 != IGNORE_LABEL)).flatten())[0].astype("int32") | ||
mask_sub4 = np.where(((label2 < (NUM_CLASSES + 1)) & ( | ||
label2 != IGNORE_LABEL)).flatten())[0].astype("int32") | ||
return image.astype( | ||
"float32"), label0, mask_sub1, label1, mask_sub2, label2, mask_sub4 | ||
|
||
|
||
def train(batch_size=32, flip=True, scaling=True): | ||
""" | ||
Cityscape training set reader. | ||
It returns a reader, in which each result is a batch with batch_size samples. | ||
|
||
:param batch_size: The batch size of each result return by the reader. | ||
:type batch_size: int | ||
:param flip: Whether flip images randomly. | ||
:type batch_size: bool | ||
:param scaling: Whether scale images randomly. | ||
:type batch_size: bool | ||
:return: Training reader. | ||
:rtype: callable | ||
""" | ||
reader = DataGenerater( | ||
TRAIN_LIST, flip=flip, scaling=scaling).create_train_reader(batch_size) | ||
return reader | ||
|
||
|
||
def test(): | ||
""" | ||
Cityscape validation set reader. | ||
It returns a reader, in which each result is a sample. | ||
|
||
:return: Training reader. | ||
:rtype: callable | ||
""" | ||
reader = DataGenerater(TEST_LIST).create_test_reader() | ||
return reader | ||
|
||
|
||
def infer(image_list=TEST_LIST): | ||
""" | ||
Infer set reader. | ||
It returns a reader, in which each result is a sample. | ||
|
||
:param image_list: The image list file in which each line is a path of image to be infered. | ||
:type batch_size: str | ||
:return: Infer reader. | ||
:rtype: callable | ||
""" | ||
reader = DataGenerater(image_list).create_test_reader() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
有mean IoU的结果吗?