-
Notifications
You must be signed in to change notification settings - Fork 349
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
- Loading branch information
1 parent
a8173f3
commit bb224bf
Showing
8 changed files
with
726 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
1. 准备 | ||
|
||
安装需要测试的Paddle版本和PaddleSlim版本。 | ||
|
||
准备ImageNet数据集,假定解压到`/dataset/ILSVRC2012`文件夹,该文件夹下有`train文件夹、val文件夹、train_list.txt和val_list.txt文件`。 | ||
|
||
2. 产出量化模型 | ||
|
||
在`run_train.sh`文件中设置`data_path`为上述ImageNet数据集的路径`/dataset/ILSVRC2012`。 | ||
|
||
根据实际情况,在`run_train.sh`文件中设置使用GPU的id等参数。 | ||
|
||
执行`sh run_train.sh` 会对几个分类模型使用动态图量化训练功能进行量化,其中只执行一个epoch。 | ||
执行完后,在`output_models/quant_dygraph`目录下有产出的量化模型。 | ||
|
||
3. 转换量化模型 | ||
|
||
在Intel CPU上部署量化模型,需要使用`test/save_quant_model.py`脚本进行模型转换。 | ||
|
||
如下是对`mobilenet_v1`模型进行转换的示例。 | ||
``` | ||
python src/save_quant_model.py --load_model_path output_models/quant_dygraph/mobilenet_v1 --save_model_path int8_models/mobilenet_v1 | ||
``` | ||
|
||
4. 测试量化模型 | ||
|
||
在`run_test.sh`脚本中设置`data_path`为上述ImageNet数据集的路径`/dataset/ILSVRC2012`。 | ||
|
||
根据实际情况,在`run_test.sh`文件中设置使用GPU的id等参数。 | ||
|
||
使用`run_test.sh`脚本测试转换前和转换后的量化模型精度。 | ||
|
||
比如: | ||
``` | ||
sh run_test.sh output_models/quant_dygraph/mobilenet_v1 | ||
sh run_test.sh int8_models/mobilenet_v1 | ||
``` | ||
|
||
5. 测试目标 | ||
|
||
使用动态图量化训练功能,产出`mobilenet_v1`,`mobilenet_v2`,`resnet50`,`vgg16`量化模型,测试转换前后量化模型精度在1%误差范围内。 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
model_path=$1 | ||
test_samples=1000 # if set as -1, use all test samples | ||
data_path='/dataset/ILSVRC2012/' | ||
batch_size=16 | ||
|
||
echo "--------eval model: ${model_name}-------------" | ||
python ./src/eval.py \ | ||
--model_path=$model_path \ | ||
--data_dir=${data_path} \ | ||
--test_samples=${test_samples} \ | ||
--batch_size=${batch_size} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
export CUDA_VISIBLE_DEVICES=5 | ||
|
||
data_path="/dataset/ILSVRC2012" | ||
epoch=1 | ||
lr=0.0001 | ||
batch_size=32 | ||
num_workers=3 | ||
output_dir=$PWD/output_models | ||
|
||
for model in mobilenet_v1 mobilenet_v2 resnet50 vgg16 | ||
do | ||
python ./src/qat.py \ | ||
--arch=${model} \ | ||
--data=${data_path} \ | ||
--epoch=${epoch} \ | ||
--batch_size=${batch_size} \ | ||
--num_workers=${num_workers} \ | ||
--lr=${lr} \ | ||
--output_dir=${output_dir} \ | ||
--enable_quant | ||
#--use_pact | ||
done |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import os | ||
import numpy as np | ||
import time | ||
import sys | ||
import argparse | ||
import functools | ||
import math | ||
|
||
import paddle | ||
import paddle.inference as paddle_infer | ||
from utility import add_arguments, print_arguments | ||
import imagenet_dataset as dataset | ||
|
||
|
||
def eval(args): | ||
model_file = os.path.join(args.model_path, args.model_filename) | ||
params_file = os.path.join(args.model_path, args.params_filename) | ||
config = paddle_infer.Config(model_file, params_file) | ||
config.enable_mkldnn() | ||
|
||
predictor = paddle_infer.create_predictor(config) | ||
|
||
input_names = predictor.get_input_names() | ||
input_handle = predictor.get_input_handle(input_names[0]) | ||
output_names = predictor.get_output_names() | ||
output_handle = predictor.get_output_handle(output_names[0]) | ||
|
||
val_dataset = dataset.ImageNetDataset(data_dir=args.data_dir, mode='val') | ||
eval_loader = paddle.io.DataLoader( | ||
val_dataset, batch_size=args.batch_size, drop_last=True) | ||
|
||
cost_time = 0. | ||
total_num = 0. | ||
correct_1_num = 0 | ||
correct_5_num = 0 | ||
for batch_id, data in enumerate(eval_loader()): | ||
img_np = np.array([tensor.numpy() for tensor in data[0]]) | ||
label_np = np.array([tensor.numpy() for tensor in data[1]]) | ||
|
||
input_handle.reshape(img_np.shape) | ||
input_handle.copy_from_cpu(img_np) | ||
|
||
t1 = time.time() | ||
predictor.run() | ||
t2 = time.time() | ||
cost_time += (t2 - t1) | ||
|
||
output_data = output_handle.copy_to_cpu() | ||
|
||
for i in range(len(label_np)): | ||
label = label_np[i][0] | ||
result = output_data[i, :] | ||
index = result.argsort() | ||
total_num += 1 | ||
if index[-1] == label: | ||
correct_1_num += 1 | ||
if label in index[-5:]: | ||
correct_5_num += 1 | ||
|
||
if batch_id % 10 == 0: | ||
acc1 = correct_1_num / total_num | ||
acc5 = correct_5_num / total_num | ||
avg_time = cost_time / total_num | ||
print( | ||
"batch_id {}, acc1 {:.3f}, acc5 {:.3f}, avg time {:.5f} sec/img". | ||
format(batch_id, acc1, acc5, avg_time)) | ||
|
||
if args.test_samples > 0 and \ | ||
(batch_id + 1)* args.batch_size >= args.test_samples: | ||
break | ||
|
||
acc1 = correct_1_num / total_num | ||
acc5 = correct_5_num / total_num | ||
print("End test: test_acc1 {:.3f}, test_acc5 {:.5f}".format(acc1, acc5)) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description=__doc__) | ||
add_arg = functools.partial(add_arguments, argparser=parser) | ||
add_arg('model_path', str, "", "The inference model path.") | ||
add_arg('model_filename', str, "int8_infer.pdmodel", "model filename") | ||
add_arg('params_filename', str, "int8_infer.pdiparams", "params filename") | ||
add_arg('data_dir', str, "/dataset/ILSVRC2012/", | ||
"The ImageNet dataset root dir.") | ||
add_arg('test_samples', int, -1, | ||
"Test samples. If set -1, use all test samples") | ||
add_arg('batch_size', int, 16, "Batch size.") | ||
|
||
args = parser.parse_args() | ||
print_arguments(args) | ||
|
||
eval(args) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.