Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【hydra No.19】改造 phylstm #579

Merged
merged 10 commits into from
Oct 20, 2023
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 13 additions & 13 deletions docs/zh/examples/phylstm.md
co63oc marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,9 @@ $$

在 PhyLSTM 问题中,建立 LSTM 网络 Deep LSTM network,用 PaddleScience 代码表示如下

``` py linenums="105"
``` py linenums="102"
--8<--
examples/phylstm/phylstm2.py:105:106
examples/phylstm/phylstm2.py:102:107
--8<--
```

Expand All @@ -47,39 +47,39 @@ wget -P ./ https://paddle-org.bj.bcebos.com/paddlescience/datasets/PhyLSTM/data_

本案例涉及读取数据构建,如下所示

``` py linenums="38"
``` py linenums="37"
--8<--
examples/phylstm/phylstm2.py:38:105
examples/phylstm/phylstm2.py:37:100
--8<--
```

### 3.3 约束构建

设置训练数据集和损失计算函数,返回字段,代码如下所示:

``` py linenums="118"
``` py linenums="119"
--8<--
examples/phylstm/phylstm2.py:118:136
examples/phylstm/phylstm2.py:119:137
--8<--
```

### 3.4 评估器构建

设置评估数据集和损失计算函数,返回字段,代码如下所示:

``` py linenums="139"
``` py linenums="140"
--8<--
examples/phylstm/phylstm2.py:139:158
examples/phylstm/phylstm2.py:140:159
--8<--
```

### 3.5 超参数设定

接下来我们需要指定训练轮数,此处我们按实验经验,使用 100 轮训练轮数。

``` py linenums="36"
``` py linenums="170"
--8<--
examples/phylstm/phylstm2.py:36:36
examples/phylstm/phylstm2.py:170:170
--8<--
```
co63oc marked this conversation as resolved.
Show resolved Hide resolved

Expand All @@ -99,15 +99,15 @@ examples/phylstm/phylstm2.py:163:163

``` py linenums="164"
--8<--
examples/phylstm/phylstm2.py:164:175
examples/phylstm/phylstm2.py:164:178
--8<--
```

最后启动训练、评估即可:

``` py linenums="177"
``` py linenums="180"
--8<--
examples/phylstm/phylstm2.py:177:180
examples/phylstm/phylstm2.py:180:183
--8<--
```

Expand Down
39 changes: 39 additions & 0 deletions examples/phylstm/conf/phylstm2.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
hydra:
run:
# dynamic output directory according to running time and override name
dir: outputs_PhyLSTM2/${now:%Y-%m-%d}/${now:%H-%M-%S}/${hydra.job.override_dirname}
job:
name: ${mode} # name of logfile
chdir: false # keep current working direcotry unchaned
sweep:
# output directory for multirun
dir: ${hydra.run.dir}
subdir: ./

# general settings
mode: train # running mode: train/eval
seed: 42
output_dir: ${hydra:run.dir}
log_freq: 20
data_file: data_boucwen.mat
co63oc marked this conversation as resolved.
Show resolved Hide resolved

# model settings
MODEL:
phylstm2_net:
input_size: 1
hidden_size: 100
model_type: 2

# training settings
TRAIN:
epochs: 100
iters_per_epoch: 1
save_freq: 50
pretrained_model_path: null
checkpoint_path: null
co63oc marked this conversation as resolved.
Show resolved Hide resolved
learning_rate: 0.001

# evaluation settings
EVAL:
pretrained_model_path: null
eval_with_no_grad: true
co63oc marked this conversation as resolved.
Show resolved Hide resolved
39 changes: 39 additions & 0 deletions examples/phylstm/conf/phylstm3.yaml
co63oc marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
hydra:
run:
# dynamic output directory according to running time and override name
dir: outputs_PhyLSTM3/${now:%Y-%m-%d}/${now:%H-%M-%S}/${hydra.job.override_dirname}
job:
name: ${mode} # name of logfile
chdir: false # keep current working direcotry unchaned
co63oc marked this conversation as resolved.
Show resolved Hide resolved
sweep:
# output directory for multirun
dir: ${hydra.run.dir}
subdir: ./

# general settings
mode: train # running mode: train/eval
seed: 42
output_dir: ${hydra:run.dir}
log_freq: 20
data_file: data_boucwen.mat

# model settings
MODEL:
phylstm3_net:
input_size: 1
co63oc marked this conversation as resolved.
Show resolved Hide resolved
hidden_size: 100
model_type: 3

# training settings
TRAIN:
epochs: 200
iters_per_epoch: 1
save_freq: 50
pretrained_model_path: null
checkpoint_path: null
learning_rate: 0.001

# evaluation settings
EVAL:
pretrained_model_path: null
eval_with_no_grad: true
184 changes: 162 additions & 22 deletions examples/phylstm/phylstm2.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,26 +16,25 @@
Reference: /~https://github.com/zhry10/PhyLSTM.git
"""

from os import path as osp

import functions
import hydra
import numpy as np
import scipy.io
from omegaconf import DictConfig

import ppsci
from ppsci.utils import config
from ppsci.utils import logger

if __name__ == "__main__":
args = config.parse_args()

def train(cfg: DictConfig):
# set random seed for reproducibility
ppsci.utils.misc.set_random_seed(42)
# set output directory
OUTPUT_DIR = "./output_PhyLSTM2" if not args.output_dir else args.output_dir
ppsci.utils.misc.set_random_seed(cfg.seed)
# initialize logger
logger.init_logger("ppsci", f"{OUTPUT_DIR}/train.log", "info")
# set training hyper-parameters
EPOCHS = 100 if not args.epochs else args.epochs
logger.init_logger("ppsci", osp.join(cfg.output_dir, "train.log"), "info")

mat = scipy.io.loadmat("data_boucwen.mat")
mat = scipy.io.loadmat(cfg.data_file)
ag_data = mat["input_tf"] # ag, ad, av
u_data = mat["target_X_tf"]
ut_data = mat["target_Xd_tf"]
Expand Down Expand Up @@ -90,9 +89,6 @@
eta_tt_star = u_tt_all[0:10]
ag_c_star = ag_all[0:50]
lift_star = -ag_c_star
eta_c_star = u_all[0:50]
eta_t_c_star = u_t_all[0:50]
eta_tt_c_star = u_tt_all[0:50]

eta = eta_star
ag = ag_star
Expand All @@ -103,7 +99,12 @@
g = -eta_tt - ag
phi_t = np.repeat(phi_t0, ag_c_star.shape[0], axis=0)

model = ppsci.arch.DeepPhyLSTM(1, eta.shape[2], 100, 2)
model = ppsci.arch.DeepPhyLSTM(
cfg.MODEL.phylstm2_net.input_size,
eta.shape[2],
cfg.MODEL.phylstm2_net.hidden_size,
cfg.MODEL.phylstm2_net.model_type,
)
model.register_input_transform(functions.transform_in)
model.register_output_transform(functions.transform_out)

Expand All @@ -113,7 +114,7 @@
label_dict_train,
input_dict_val,
label_dict_val,
) = dataset_obj.get(EPOCHS)
) = dataset_obj.get(cfg.TRAIN.epochs)

sup_constraint_pde = ppsci.constraint.SupervisedConstraint(
{
Expand Down Expand Up @@ -159,22 +160,161 @@
validator_pde = {sup_validator_pde.name: sup_validator_pde}

# initialize solver
ITERS_PER_EPOCH = 1
optimizer = ppsci.optimizer.Adam(1e-3)(model)
optimizer = ppsci.optimizer.Adam(cfg.TRAIN.learning_rate)(model)
solver = ppsci.solver.Solver(
model,
constraint_pde,
OUTPUT_DIR,
cfg.output_dir,
optimizer,
None,
EPOCHS,
ITERS_PER_EPOCH,
save_freq=50,
cfg.TRAIN.epochs,
cfg.TRAIN.iters_per_epoch,
save_freq=cfg.TRAIN.save_freq,
log_freq=cfg.log_freq,
seed=cfg.seed,
validator=validator_pde,
eval_with_no_grad=True,
checkpoint_path=cfg.TRAIN.checkpoint_path,
eval_with_no_grad=cfg.EVAL.eval_with_no_grad,
)

# train model
solver.train()
# evaluate after finished training
solver.eval()


def evaluate(cfg: DictConfig):
# set random seed for reproducibility
ppsci.utils.misc.set_random_seed(cfg.seed)
# initialize logger
logger.init_logger("ppsci", osp.join(cfg.output_dir, "eval.log"), "info")

mat = scipy.io.loadmat(cfg.data_file)
ag_data = mat["input_tf"] # ag, ad, av
u_data = mat["target_X_tf"]
ut_data = mat["target_Xd_tf"]
utt_data = mat["target_Xdd_tf"]
ag_data = ag_data.reshape([ag_data.shape[0], ag_data.shape[1], 1])
u_data = u_data.reshape([u_data.shape[0], u_data.shape[1], 1])
ut_data = ut_data.reshape([ut_data.shape[0], ut_data.shape[1], 1])
utt_data = utt_data.reshape([utt_data.shape[0], utt_data.shape[1], 1])

t = mat["time"]
dt = t[0, 1] - t[0, 0]

ag_all = ag_data
u_all = u_data
u_t_all = ut_data
u_tt_all = utt_data

# finite difference
N = u_data.shape[1]
phi1 = np.concatenate(
[
np.array([-3 / 2, 2, -1 / 2]),
np.zeros([N - 3]),
]
)
temp1 = np.concatenate([-1 / 2 * np.identity(N - 2), np.zeros([N - 2, 2])], axis=1)
temp2 = np.concatenate([np.zeros([N - 2, 2]), 1 / 2 * np.identity(N - 2)], axis=1)
phi2 = temp1 + temp2
phi3 = np.concatenate(
[
np.zeros([N - 3]),
np.array([1 / 2, -2, 3 / 2]),
]
)
phi_t0 = (
1
/ dt
* np.concatenate(
[
np.reshape(phi1, [1, phi1.shape[0]]),
phi2,
np.reshape(phi3, [1, phi3.shape[0]]),
],
axis=0,
)
)
phi_t0 = np.reshape(phi_t0, [1, N, N])

ag_star = ag_all[0:10]
eta_star = u_all[0:10]
eta_t_star = u_t_all[0:10]
eta_tt_star = u_tt_all[0:10]
ag_c_star = ag_all[0:50]
lift_star = -ag_c_star

eta = eta_star
ag = ag_star
lift = lift_star
eta_t = eta_t_star
eta_tt = eta_tt_star
ag_c = ag_c_star
g = -eta_tt - ag
phi_t = np.repeat(phi_t0, ag_c_star.shape[0], axis=0)

model = ppsci.arch.DeepPhyLSTM(
cfg.MODEL.phylstm2_net.input_size,
eta.shape[2],
cfg.MODEL.phylstm2_net.hidden_size,
cfg.MODEL.phylstm2_net.model_type,
)
model.register_input_transform(functions.transform_in)
model.register_output_transform(functions.transform_out)

dataset_obj = functions.Dataset(eta, eta_t, g, ag, ag_c, lift, phi_t)
(
_,
_,
input_dict_val,
label_dict_val,
) = dataset_obj.get(1)

sup_validator_pde = ppsci.validate.SupervisedValidator(
{
"dataset": {
"name": "NamedArrayDataset",
"input": input_dict_val,
"label": label_dict_val,
},
},
ppsci.loss.FunctionalLoss(functions.train_loss_func2),
{
"eta_pred": lambda out: out["eta_pred"],
"eta_dot_pred": lambda out: out["eta_dot_pred"],
"g_pred": lambda out: out["g_pred"],
"eta_t_pred_c": lambda out: out["eta_t_pred_c"],
"eta_dot_pred_c": lambda out: out["eta_dot_pred_c"],
"lift_pred_c": lambda out: out["lift_pred_c"],
},
metric={"metric": ppsci.metric.FunctionalMetric(functions.metric_expr)},
name="sup_valid",
)
validator_pde = {sup_validator_pde.name: sup_validator_pde}

# initialize solver
solver = ppsci.solver.Solver(
model,
output_dir=cfg.output_dir,
seed=cfg.seed,
validator=validator_pde,
checkpoint_path=cfg.EVAL.pretrained_model_path,
co63oc marked this conversation as resolved.
Show resolved Hide resolved
eval_with_no_grad=cfg.EVAL.eval_with_no_grad,
)
# evaluate after finished training
solver.eval()


@hydra.main(version_base=None, config_path="./conf", config_name="phylstm2.yaml")
def main(cfg: DictConfig):
if cfg.mode == "train":
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
else:
raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'")


if __name__ == "__main__":
main()
Loading