Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add dsin 【论文复现赛第六期】 #750

Merged
merged 12 commits into from
May 12, 2022
Merged
1 change: 1 addition & 0 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -171,6 +171,7 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # 静态图训
| 排序 | [AutoFIS](models/rank/autofis/) | - | ✓ | ✓ | >=2.1.0 | [KDD 2020][AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction](https://arxiv.org/pdf/2003.11235v3.pdf) |
| 排序 | [DCN_V2](models/rank/dcn_v2/) | - | ✓ | ✓ | >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)|
| 排序 | [AITM](models/rank/aitm/) | - | ✓ | ✓ | >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions withMulti-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
| 排序 | [DSIN](models/rank/dsin/) | - | ✓ | ✓ | >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) |
| 多任务 | [PLE](models/multitask/ple/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) | ✓ | ✓ | >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
| 多任务 | [ESMM](models/multitask/esmm/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) | ✓ | ✓ | >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| 多任务 | [MMOE](models/multitask/mmoe/)([文档](https://paddlerec.readthedocs.io/en/latest/models/multitask/mmoe.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238934) | ✓ | ✓ | >=2.1.0 | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
Expand Down
1 change: 1 addition & 0 deletions README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -161,6 +161,7 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # Training wit
| Rank | [AutoFIS](models/rank/autofis/) | - | ✓ | ✓ | >=2.1.0 | [KDD 2020][AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction](https://arxiv.org/pdf/2003.11235v3.pdf) |
| Rank | [DCN_V2](models/rank/dcn_v2/) | - | ✓ | ✓ | >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)|
| Rank | [AITM](models/rank/aitm/) | - | ✓ | ✓ | >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions withMulti-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) |
| Rank | [DSIN](models/rank/dsin/) | - | ✓ | ✓ | >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) |
| Multi-Task | [PLE](models/multitask/ple/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) | ✓ | ✓ | >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
| Multi-Task | [ESMM](models/multitask/esmm/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) | ✓ | ✓ | >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| Multi-Task | [MMOE](models/multitask/mmoe/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/mmoe.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238934) | ✓ | ✓ | >=2.1.0 | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
Expand Down
10 changes: 10 additions & 0 deletions datasets/Ali_Display_Ad_Click_DSIN/get_data.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
mkdir raw_data
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

文件可以改名为run.sh,和其他数据集保持一致。同时记得修改readme中的运行方式

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里我是和DMR model 的dataset:Ali_Display_Ad_Click对齐的,因为数据集一致。

cd raw_data
wget https://paddlerec.bj.bcebos.com/datasets/dmr/user_profile.csv.tar.gz
tar -zxvf user_profile.csv.tar.gz
wget https://paddlerec.bj.bcebos.com/datasets/dmr/raw_sample.csv.tar.gz
tar -zxvf raw_sample.csv.tar.gz
wget https://paddlerec.bj.bcebos.com/datasets/dmr/behavior_log.csv.tar.gz
tar -zxvf behavior_log.csv.tar.gz
wget https://paddlerec.bj.bcebos.com/datasets/dmr/ad_feature.csv.tar.gz
tar -zxvf ad_feature.csv.tar.gz
58 changes: 58 additions & 0 deletions datasets/Ali_Display_Ad_Click_DSIN/readme.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
# Ali_Display_Ad_Click数据集
[Ali_Display_Ad_Click](https://tianchi.aliyun.com/dataset/dataDetail?dataId=56)是阿里巴巴提供的一个淘宝展示广告点击率预估数据集

## 原始数据集介绍
- 原始样本骨架raw_sample:淘宝网站中随机抽样了114万用户8天内的广告展示/点击日志(2600万条记录),构成原始的样本骨架
1. user:脱敏过的用户ID;
2. adgroup_id:脱敏过的广告单元ID;
3. time_stamp:时间戳;
4. pid:资源位;
5. nonclk:为1代表没有点击;为0代表点击;
6. clk:为0代表没有点击;为1代表点击;

```
user,time_stamp,adgroup_id,pid,nonclk,clk
581738,1494137644,1,430548_1007,1,0
```

- 广告基本信息表ad_feature:本数据集涵盖了raw_sample中全部广告的基本信息
1. adgroup_id:脱敏过的广告ID;
2. cate_id:脱敏过的商品类目ID;
3. campaign_id:脱敏过的广告计划ID;
4. customer: 脱敏过的广告主ID;
5. brand:脱敏过的品牌ID;
6. price: 宝贝的价格
```
adgroup_id,cate_id,campaign_id,customer,brand,price
63133,6406,83237,1,95471,170.0
```

- 用户基本信息表user_profile:本数据集涵盖了raw_sample中全部用户的基本信息
1. userid:脱敏过的用户ID;
2. cms_segid:微群ID;
3. cms_group_id:cms_group_id;
4. final_gender_code:性别 1:男,2:女;
5. age_level:年龄层次; 1234
6. pvalue_level:消费档次,1:低档,2:中档,3:高档;
7. shopping_level:购物深度,1:浅层用户,2:中度用户,3:深度用户
8. occupation:是否大学生 ,1:是,0:否
9. new_user_class_level:城市层级
```
userid,cms_segid,cms_group_id,final_gender_code,age_level,pvalue_level,shopping_level,occupation,new_user_class_level
234,0,5,2,5,,3,0,3
```

- 用户的行为日志behavior_log:本数据集涵盖了raw_sample中全部用户22天内的购物行为
1. user:脱敏过的用户ID;
2. time_stamp:时间戳;
3. btag:行为类型, 包括以下四种:(pv:浏览),(cart:加入购物车),(fav:喜欢),(buy:购买)
4. cate:脱敏过的商品类目id;
5. brand: 脱敏过的品牌id;
```
user,time_stamp,btag,cate,brand
558157,1493741625,pv,6250,91286
```

## 预处理数据集介绍
对原始数据集中的四个文件,参考[原论文的数据预处理过程](/~https://github.com/shenweichen/DSIN/tree/master/code)对数据进行处理,形成满足DSIN论文条件且可以被reader直接读取的数据集。
数据集共有八个pkl文件,训练集和测试集各自拥有四个,以训练集为例,这四个文件为train_feat_input.pkl、train_sess_input、train_sess_length和train_label.pkl。各自存储了按0.25的采样比进行采样后的user及item特征输入,用户会话特征输入、用户会话长度和标签数据。
12 changes: 12 additions & 0 deletions datasets/Ali_Display_Ad_Click_DSIN/run.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
mkdir big_train
mkdir big_test
wget -O model_input.tar.gz https://bj.bcebos.com/v1/ai-studio-online/53e61a9bcfc54e0581044883d0f876d9841cb4d0a68848f1a1d568a84591da6f?responseContentDisposition=attachment%3B%20filename%3Dmodel_input.tar.gz&authorization=bce-auth-v1%2F0ef6765c1e494918bc0d4c3ca3e5c6d1%2F2022-04-21T01%3A43%3A00Z%2F-1%2F%2F665a728726f0569e1ef9dd423adfa40a2a5e798f86a8d5d68804a2f21cc03624
tar -zxvf model_input.tar.gz
mv model_input/test_feat_input.pkl big_test/
mv model_input/test_label.pkl big_test/
mv model_input/test_sess_input.pkl big_test/
mv model_input/test_session_length.pkl big_test/
mv model_input/train_feat_input.pkl big_train/
mv model_input/train_label.pkl big_train/
mv model_input/train_sess_input.pkl big_train/
mv model_input/train_session_length.pkl big_train/
Binary file added doc/imgs/dsin.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
82 changes: 82 additions & 0 deletions doc/source/models/rank/dsin.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# dsin (Deep Session Interest Network for Click-Through Rate Prediction)

代码请参考:[dsin](/~https://github.com/PaddlePaddle/PaddleRec/tree/master/models/rank/dsin)
如果我们的代码对您有用,还请点个star啊~

## 内容

- [模型简介](#模型简介)
- [数据准备](#数据准备)
- [运行环境](#运行环境)
- [快速开始](#快速开始)
- [模型组网](#模型组网)
- [效果复现](#效果复现)
- [进阶使用](#进阶使用)
- [FAQ](#FAQ)

## 模型简介
本模型主要聚焦于用户的历史会话行为,通过Self-Attention和BiLSTM对历史会话行为进行学习,最后通过Activation Unit得到最终的session表征向量,再结合其他特征送入MLP计算最后的ctr score。[Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf)文章通过 Transformer 和 BiLSTM 来学习用户的 Session Interest Interacting,提升模型的表达能力。

## 数据准备
本模型使用论文中的数据集Alimama Dataset,参考[原文作者的数据预处理过程](/~https://github.com/shenweichen/DSIN/tree/master/code)对数据进行处理。在模型目录的data目录下为您准备了快速运行的示例数据,若需要使用全量数据可以参考下方[效果复现](#效果复现)部分。

## 运行环境
PaddlePaddle>=2.0

python 3.5/3.6/3.7

os : windows/linux/macos

## 快速开始
本文提供了样例数据可以供您快速体验,在任意目录下均可执行。在DSIN模型目录的快速执行命令如下:
```bash
# 进入模型目录
# cd models/rank/dmr # 在任意目录均可运行
# 动态图训练
python -u ../../../tools/trainer.py -m config.yaml # 全量数据运行config_bigdata.yaml
# 动态图预测
python -u ../../../tools/infer.py -m config.yaml

# 静态图训练
python -u ../../../tools/static_trainer.py -m config.yaml # 全量数据运行config_bigdata.yaml
# 静态图预测
python -u ../../../tools/static_infer.py -m config.yaml
```

## 模型组网
论文[Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf)中的网络结构如图所示:
<p align="center">
<img align="center" src="../../../doc/imgs/dsin.png">
<p>

## 效果复现
为了方便使用者能够快速的跑通每一个模型,我们在每个模型下都提供了样例数据。如果需要复现readme中的效果,请按如下步骤依次操作即可。
在全量数据下模型的指标如下:

| 模型 | auc | batch_size | epoch_num | Time of each epoch |
| :------| :------ | :------ | :------| :------ |
| DSIN | 0.6356 | 4096 | 1 | 约10分钟 |

1. 确认您当前所在目录为PaddleRec/models/rank/dsin
2. 进入paddlerec/datasets/Ali_Display_Ad_Click_DSIN目录下,执行该脚本,会从国内源的服务器上下载我们预处理完成的Alimama全量数据集,并解压到指定文件夹。若您希望从原始数据集自行处理,请详见该目录下的readme。

``` bash
cd ../../../datasets/Ali_Display_Ad_Click_DSIN
sh run.sh
```
3. 切回模型目录,执行命令运行全量数据

```bash
cd - # 切回模型目录
# 动态图训练
python -u ../../../tools/trainer.py -m config_bigdata.yaml # 全量数据运行config_bigdata.yaml
python -u ../../../tools/infer.py -m config_bigdata.yaml # 全量数据运行config_bigdata.yaml
```

效果复现过程可参考[AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/3850087)。

Note:运行环境为至尊GPU。

## 进阶使用

## FAQ
1 change: 1 addition & 0 deletions doc/source/readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,3 +49,4 @@
[deeprec](https://paddlerec.readthedocs.io/en/latest/models/rank/deeprec.html)
[autofis](https://paddlerec.readthedocs.io/en/latest/models/rank/autofis.html)
[aitm](https://paddlerec.readthedocs.io/en/latest/models/rank/aitm.html)
[dsin](https://paddlerec.readthedocs.io/en/latest/models/rank/dsin.html)
13 changes: 13 additions & 0 deletions models/rank/dsin/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
60 changes: 60 additions & 0 deletions models/rank/dsin/config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

runner:
train_data_dir: "data/sample_data"
train_reader_path: "dsin_reader" # importlib format
use_gpu: False
use_auc: True
train_batch_size: 64
epochs: 1
print_interval: 10
# model_init_path: "output_model_dmr/0" # init model
model_save_path: "output_model_dsin"
test_data_dir: "data/sample_data"
infer_reader_path: "dsin_reader" # importlib format
infer_batch_size: 64
infer_load_path: "output_model_dsin"
infer_start_epoch: 0
infer_end_epoch: 1

# hyper parameters of user-defined network
hyper_parameters:
# optimizer config
optimizer:
class: Adam
learning_rate: 0.002
# user feature size
user_size: 265442
cms_segid_size: 97
cms_group_size: 13
final_gender_size: 2
age_level_size: 7
pvalue_level_size: 4
shopping_level_size: 3
occupation_size: 2
new_user_class_level_size: 5

# item feature size
adgroup_size: 512431
cate_size: 12974 #max value + 1
campaign_size: 309448
customer_size: 195841
brand_size: 461499 #max value + 1

# context feature size
pid_size: 2

# embedding size
feat_embed_size: 4
60 changes: 60 additions & 0 deletions models/rank/dsin/config_bigdata.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

runner:
train_data_dir: "../../../datasets/Ali_Display_Ad_Click_DSIN/big_train"
train_reader_path: "dsin_reader" # importlib format
use_gpu: True
use_auc: True
train_batch_size: 4096
epochs: 1
print_interval: 50

model_save_path: "output_model_all_dsin"
test_data_dir: "../../../datasets/Ali_Display_Ad_Click_DSIN/big_test"
infer_reader_path: "dsin_reader" # importlib format
infer_batch_size: 16384 # 2**14
infer_load_path: "output_model_all_dsin"
infer_start_epoch: 0
infer_end_epoch: 1

# hyper parameters of user-defined network
hyper_parameters:
# optimizer config
optimizer:
class: Adam
learning_rate: 0.00235
# user feature size
user_size: 265442
cms_segid_size: 97
cms_group_size: 13
final_gender_size: 2
age_level_size: 7
pvalue_level_size: 4
shopping_level_size: 3
occupation_size: 2
new_user_class_level_size: 5

# item feature size
adgroup_size: 512431
cate_size: 11859 #max value + 1
campaign_size: 309448
customer_size: 195841
brand_size: 362855 #max value + 1

# context feature size
pid_size: 2

# embedding size
feat_embed_size: 4
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading